首页>>人工智能->人工智能有哪些难题(2023年最新整理)

人工智能有哪些难题(2023年最新整理)

时间:2023-12-04 本站 点击:0

导读:很多朋友问到关于人工智能有哪些难题的相关问题,本文首席CTO笔记就来为大家做个详细解答,供大家参考,希望对大家有所帮助!一起来看看吧!

人工智能技术发展都有哪些担忧问题?

随着人工智能技术的不断发展,大众对于人工智能能够产生的影响作用大多还是保持着一些负面的看法,下面电脑培训就一起来了解一下都有哪些担忧吧。

1.个人正在失去对生活的控制

数字生活关键方面的决策被自动过渡给了由代码驱动的「黑匣子」。人们缺乏输入,也不了解工具是如何工作的。他们牺牲了独立性、隐私权和选择权;他们无法控制这些过程。随着自动化系统变得越来越普遍和复杂,这种影响将进一步加深。

2.数据滥用

大多数人工智能工具现在和将来都掌握在追求利润的公司或追求权力的政府手中。价值观和道德规范往往没有被纳入数字系统,让人们为自己做决定。这些系统是全球联网的,不容易管理或控制。

3.失业

基于代码的机器智能的效率和其他经济优势将继续干扰人类工作的各个方面。一些人预计新的就业机会将会出现,另一些人则担心大规模失业、经济分化加剧以及包括民粹主义起义在内的社会动荡。

4.个体认知、社交和生存技能的降低

许多人认为人工智能可以增强人的能力,但也有一些人认为恰恰相反——人们对机器驱动网络的依赖程度日益加深,将会削弱他们独立思考、独立于自动化系统采取行动以及与他人进行有效互动的能力。

5.大混乱:自主武器、网络犯罪和武器化信息

公民将更加脆弱,例如暴露于失控的网络犯罪和网络战中。

一些人预测,由于自主军事应用的加速增长以及对使用武器化信息、谎言和宣传危险地破坏人类群体的稳定,传统社会政治结构将进一步受到侵蚀,并可能造成重大的生命损失。一些人还担心网络犯罪分子会侵入经济系统。

人工智能在给我们提供生活便利的同时,还会带来哪些挑战和问题?

一、实施起来很昂贵,当将安装、维护和修理的成本结合起来时,人工智能是一个昂贵的提议,那些拥有巨额资金的人和企业可以实施。然而,没有资金的企业和行业会发现很难将人工智能技术应用到他们的流程或战略中。

二、对机器的依赖,随着人类对机器依赖程度的不断增加,我们正处在一个人类难以在没有机器帮助情况下工作的时代。我们过去用过它,毫无疑问,我们将来也会继续用到它,我们对机器的依赖只会增加。因此,人类的心理和思维能力会随着时间推移而降低。

三、取代低技能工作,到目前为止,这是技术专家们首要关注的问题。人工智能很可能会取代许多低技能工作。由于机器可以24 * 7不间断工作,因此与人类相比,企业更喜欢投资机器。

随着我们走向自动化世界,几乎每一项任务都将由机器完成,有可能出现大规模失业。这方面的一个实际例子是无人驾驶汽车,如果无人驾驶汽车开始出现,未来数百万司机将会失业。

四、工作限制,人工智能机器被编程为根据它们所接受的训练和编程来完成某些任务。依靠机器来适应新环境,勇于创新,跳出框框思考将是一个巨大的错误。这是不可能的,因为它们的思维仅限于它们接受过训练的算法。

扩展资料:

人工智能简介

值得注意的是,虽然人类是实现人工智能的模板,但是人工智能在当下的实践已经不单单以“类人”为目标,很多时候是远超人类水平的。

人类的特定智能很多情况下是有局限的。比如,我们在决定买哪本人工智能教材时,其决策要素一般不超过 5—7 个,而机器则可以同时考虑数以百万计的决策要素进行判断。人类感知的物理范围是十分有限的,而机器视觉可 以识别数千米范围内的目标。

因此,在很多单项智能上,人类被机器超越只是时间问题,如计算、下棋、识图、辨声等。人工智能的发展进程必定是我们见证人类单项智能被机器逐步超越 的过程。

但是有一个至关重要的奖项,智能的“全能冠军”,却是机器难以从人类手中夺走的。无数个智能的单项冠军也难以企及这一“全能冠军”的智能水平。这就引出了人工智能的强弱之分的话题。

人工智能除了有“感知”与“认知”之分,亦有“强”“弱”之 分。任何一台普通的计算器在数值运算方面的能力远超我们人类最聪明的头脑,但是不会有人觉得他比 3岁的儿童更智能。

其背 后的根本原因在于,计算器只能胜任数值计算这一单项任务,而 3岁儿童却能胜任几乎无法穷举的任务,如识别父母、寻找奶瓶、 辨别声音等。因此,智能的强弱很大程度上体现在其通用或单一的程度。

强的智能是能够胜任任何任务求解所需要的智能,而弱的智能仅限于解决某个特定任务,强人工智能的实现显然远远难于弱人工智能。当前取得实际应用效果的仍以弱人工智能为主。实现强人工智能任重道远,但却不可回避。

因为强人工智能解决 的是人工智能的根本难题:现实世界的开放性。现实世界是复杂的,真实任务是多样的,而我们的计算机当前只能胜任预定义的任务与场景,一旦碰到从未见过的案例、样本、场景,就显得无能为力。

努力提升机器智能的适应性,以及对于开放性的应对能力,已经成为人工智能最为重要的研究课题之一。值得注意的是,人工智能仍然是个不断发展中的学科,其内涵仍在不断丰富与完善,一些新的研究视角在为人工智能持续增添新的内涵。

如 AI 的安全性与可控性、AI 的黑盒化与可解释、AI 与人文学科、AI 与社会发展、AI 与脑科学等,这些新的研究视角在持续推动 AI 概念的发展与完善。

人工智能技术发展有哪些难题?

如果说发展遇到的难题,那是相当之多,投资、政策等因素。我们细化来说,人工智能发展,有三大关键要素:算法、算力和数据。其中,数据起着重要作用,早前哈佛商业评论的一份研究显示,只有3%的公司数据符合基本质量标准,近一半的数据质量问题导致明显的负面业务后果。

普华永道最新的一份报告指出,大型企业发现,多年来编制的劣质的客户和商业数据可能使他们无法利用人工智能和其他数字工具来削减成本,无法实现增加收入并保持竞争力。

这个问题在国内其实很普遍,带来的后果也堪忧,糟糕的数据可能导致误导性的结果。高质量数据对AI的意义所在,无论是业务,还是升维到人工智能的发展进程,重要性不言而喻。AI数据服务也任重道远。所有,只有高质量的数据,才能确保人工智能快速发展!

从目前市场情况来看,几家颇具代表性的数据服务商,以不同的姿态入场抢食,并在各自擅长的领域中开辟一番天地。其中,云测数据就是其中一位实力玩家。云测数据,通过为企业提供定制化场景采集模式以及高质量数据标注服务,为有更高数据标准的企业贡献和输出着他们的方案,并坚持自建数据标注基地和定制化场景实验室,为企业提供最安全、最精准的全流程一体化的数据服务解决方案。

最后我想说,人工智能的发展不仅仅是技术不断攻坚克难,高质量的数据才能更好地为AI发展保驾护航!

人工智能的最大难题是什么

1、理解人类语言:

从现在来看,机器在处理文本和语言方面比以往任何时候都要好。然而,人工智能仍然不能真正理解我们的意思和我们真正的想法。

2、让机器人更像人:

让机器人做任何事情都需要针对特定的任务进行特定的编程,它可以从中学习操作,但是这个过程相对较慢。

3、防范黑客攻击机器人:

人工智能可能被用来欺骗人类。

4、人工智能游戏真正的未来在哪:

人类与人工智能游戏的结果是令人印象深刻,但也提醒我们人工智能软件的局限性。国际象棋、日本象棋和围棋都很复杂,但是其规则和玩法却比较简单。但是,生活中的大多数情况和问题并不是那么有结构性。

5、让人工智能辨别是非:

现有的人工智能技术被广泛使用,现在正在研究可用于审核人工智能系统内部运作的技术,并确保他们在投入金融或医疗保健等行业工作时做出公平的决定。

结语:以上就是首席CTO笔记为大家整理的关于人工智能有哪些难题的全部内容了,感谢您花时间阅读本站内容,希望对您有所帮助,更多关于人工智能有哪些难题的相关内容别忘了在本站进行查找喔。


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如若转载,请注明出处:/AI/11689.html