导读:很多朋友问到关于人工智能简史综述怎么写的相关问题,本文首席CTO笔记就来为大家做个详细解答,供大家参考,希望对大家有所帮助!一起来看看吧!
人工智能发展综述
近十多年来,随着算法与控制技术的不断提高,人工智能正在以爆发式的速度蓬勃发展。并且,随着人机交互的优化、大数据的支持、模式识别技术的提升,人工智能正逐渐的走入我们的生活。本文主要阐述了人工智能的发展历史、发展近况、发展前景以及应用领域。
人工智能(Artificial Intelligence)简称AI,是麦卡赛等人在1956年的一场会议时提出的概念。
近几年,在“人机大战”的影响下,人工智能的话题十分的火热,特别是在“阿尔法狗”(AlphaGo)战胜李世石后,人们一直在讨论人是否能“战胜”自己制造的有着大数据支持的“人工智能”,而在各种科幻电影的渲染中,人工智能的伦理性、哲学性的问题也随之加重。
人工智能是一个极其复杂又令人激动的事物,人们需要去了解真正的人工智能,因此本文将会对什么是人工智能以及人工智能的发展历程、未来前景和应用领域等方面进行详细的阐述。
人们总希望使计算机或者机器能够像人一样思考、像人一样行动、合理地思考、合理地行动,并帮助人们解决现实中实际的问题。而要达到以上的功能,则需要计算机(机器人或者机器)具有以下的能力:
自然语言处理(natural language processing)
知识表示(knowledge representation)
自动推理(automated reasoning)
机器学习(machine learning)
计算机视觉(computer vision)
机器人学(robotics)
这6个领域,构成了人工智能的绝大多数内容。人工智能之父阿兰·图灵(Alan Turing)在1950年还提出了一种图灵测试(Turing Test),旨在为计算机的智能性提供一个令人满意的可操作性定义。
关于图灵测试,是指测试者在与被测试者(一个人和一台机器)隔开的情况下,通过一些装置(如键盘)向被测试者随意提问。进行多次测试后,如果有超过30%的测试者不能确定出被测试者是人还是机器,那么这台机器就通过了测试,并被认为具有人类智能。
图灵测试是在60多年前就已经提出来了,但是在现在依然适用,然而我们现在的发展其实远远落后于当年图灵的预测。
在2014年6月8日,由一个俄罗斯团队开发的一个模拟人类说话的脚本——尤金·古斯特曼(Eugene Goostman)成为了首个通过图灵测试的“计算机”,它成功的使人们相信了它是一个13岁的小男孩,该事件成为了人工智能发展的一个里程碑。
在2015年,《Science》杂志报道称,人工智能终于能像人类一样学习,并通过了图灵测试。一个AI系统能够迅速学会写陌生文字,同时还能识别出非本质特征,这是人工智能发展的一大进步。
①1943-1955年人工智能的孕育期
人工智能的最早工作是Warren McCulloch和Walter Pitts完成的,他们利用了基础生理学和脑神经元的功能、罗素和怀特海德的对命题逻辑的形式分析、图灵的理论,他们提出了一种神经元模型并且将每个神经元叙述为“开”和“关”。人工智能之父图灵在《计算机与智能》中,提出了图灵测试、机器学习、遗传算法等各种概念,奠定了人工智能的基础。
②1956年人工智能的诞生
1956年的夏季,以麦卡锡、明斯基、香农、罗切斯特为首的一批科学家,在达特茅斯组织组织了一场两个月的研讨会,在这场会议上,研究了用机器研究智能的一系列问题,并首次提出了“人工智能”这一概念,人工智能至此诞生。
③1952-1969年人工智能的期望期
此时,由于各种技术的限制,当权者人为“机器永远不能做X”,麦卡锡把这段时期称作“瞧,妈,连手都没有!”的时代。
后来在IBM公司,罗切斯特和他的同事们制作了一些最初的人工智能程序,它能够帮助学生们许多学生证明一些棘手的定理。
1958年,麦卡锡发表了“Program with Common Sense”的论文,文中他描述了“Advice Taker”,这个假想的程序可以被看作第一个人工智能的系统。
④1966-1973人工智能发展的困难期
这个时期,在人工智能发展时主要遇到了几个大的困难。
第一种困难来源于大多数早期程序对其主题一无所知;
第二种困难是人工智能试图求解的许多问题的难解性。
第三种困难是来源于用来产生智能行为的基本结构的某些根本局限。
⑤1980年人工智能成为产业
此时期,第一个商用的专家系统开始在DEC公司运转,它帮助新计算机系统配置订单。1981年,日本宣布了“第五代计算机”计划,随后美国组建了微电子和计算机技术公司作为保持竞争力的集团。随之而来的是几百家公司开始研发“专家系统”、“视觉系统”、“机器人与服务”这些目标的软硬件开发,一个被称为“人工智能的冬天”的时期到来了,很多公司开始因为无法实现当初的设想而开始倒闭。
⑥1986年以后
1986年,神经网络回归。
1987年,人工智能开始采用科学的方法,基于“隐马尔可夫模型”的方法开始主导这个领域。
1995年,智能Agent出现。
2001年,大数据成为可用性。
在1997年时,IBM公司的超级计算机“深蓝”战胜了堪称国际象棋棋坛神话的前俄罗斯棋手Garry Kasparov而震惊了世界。
在2016年时,Google旗下的DeepMind公司研发的阿尔法围棋(AlphaGo)以4:1的战绩战胜了围棋世界冠军、职业九段棋手李世石,从而又一次引发了关于人工智能的热议,随后在2017年5月的中国乌镇围棋峰会上以3:0的战绩又战胜了世界排名第一的柯洁。
2017年1月6日,百度的人工智能机器人“小度”在最强大脑的舞台上人脸识别的项目中以3:2的成绩战胜了人类“最强大脑”王峰。1月13日,小度与“听音神童”孙亦廷在语音识别项目中以2:2的成绩战平。随后又在1月21日又一次在人脸识别项目中以2:0的成绩战胜了“水哥”王昱珩,更在最强大脑的收官之战中战胜了人类代表队的黄政与Alex。
2016年9月1日,百度李彦宏发布了“百度大脑”计划,利用计算机技术模拟人脑,已经可以做到孩子的智力水平。李彦宏阐述了百度大脑在语音、图像、自然语言处理和用户画像领域的前沿进展。目前,百度大脑语音合成日请求量2.5亿,语音识别率达97%。
“深度学习”是百度大脑的主要算法,在图像处理方面,百度已经成为了全世界的最领先的公司之一。
百度大脑的四大功能分别是:语音、图像,自然语言处理和用户画像。
语音是指具有语音识别能力与语音合成能力,图像主要是指计算机视觉,自然语言处理除了需要计算机有认知能力之外还需要具备推理能力,用户画像是建立在一系列真实数据之上的目标用户模型。
工业4.0是由德国提出来的十大未来项目之一,旨在提升制造业的智能化水平,建立具有适应性、资源效率及基因工程学的智慧工厂。
工业4.0已经进入中德合作新时代,有明确提出工业生产的数字化就是“工业4.0”对于未来中德经济发展具有重大意义。
工业4.0项目主要分为三大主题:智能工厂、智能生产、智能物流。
它面临的挑战有:缺乏足够的技能来加快第四次工业革命的进程、企业的IT部门有冗余的威胁、利益相关者普遍不愿意改变。
但是随着AI的发展,工业4.0的推进速度将会大大推快。
人工智能可以渗透到各行各业,领域很多,例如:
①无人驾驶:它集自动控制、体系结构、人工智能、视觉计算等众多技术于一体,是计算机科学、模式识别和智能控制技术高度发展的产物世界上最先进的无人驾驶汽车已经测试行驶近五十万公里,其中最后八万公里是在没有任何人为安全干预措施下完成的。英国政府也在资助运输研究实验室(TRL),它将在伦敦测试无人驾驶投递车能否成功用于投递包裹和其他货物,使用无人驾驶投递车辆将成为在格林威治实施的众多项目之一。
②语音识别:该技术可以使让机器知道你在说什么并且做出相应的处理,1952年贝尔研究所研制出了第一个能识别10个英文数字发音的系统。在国外的应用中,苹果公司的siri一直处于领先状态,在国内,科大讯飞在这方面的发展尤为迅速。
③自主规划与调整:NASA的远程Agent程序未第一个船载自主规划程序,用于控制航天器的操作调度。
④博弈:人机博弈一直是最近非常火热的话题,深度学习与大数据的支持,成为了机器“战胜”人脑的主要方式。
⑤垃圾信息过滤:学习算法可以将上十亿的信息分类成垃圾信息,可以为接收者节省很多时间。
⑥机器人技术:机器人技术可以使机器人代替人类从事某些繁琐或者危险的工作,在战争中,可以运送危险物品、炸弹拆除等。
⑦机器翻译:机器翻译可以将语言转化成你需要的语言,比如现在的百度翻译、谷歌翻译都可以做的很好,讯飞也开发了实时翻译的功能。
⑧智能家居:在智能家居领域,AI或许可以帮上很大的忙,比如模式识别,可以应用在很多家居上使其智能化,提高人机交互感,智能机器人也可以在帮人们做一些繁琐的家务等。
专家系统是一个智能计算机程序系统,其内部含有大量的某个领域专家水平的知识与经验,能够利用人类专家的知识和解决问题的方法来处理该领域问题。也就是说,专家系统是一个具有大量的专门知识与经验的程序系统,它应用人工智能技术和计算机技术,根据某领域一个或多个专家提供的知识和经验,进行推理和判断,模拟人类专家的决策过程,以便解决那些需要人类专家处理的复杂问题,简而言之,专家系统是一种模拟人类专家解决领域问题的计算机程序系统。
知识库是专家系统质量是否优越的关键所在,即知识库中知识的质量和数量决定着专家系统的质量水平。一般来说,专家系统中的知识库与专家系统程序是相互独立的,用户可以通过改变、完善知识库中的知识内容来提高专家系统的性能。
机器学习(Machine Learning, ML)是一门涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等的多领域交叉学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是人工智能的核心,是使计算机具有智能的根本途径,也是深度学习的基础。
机器学习领域的研究工作主要围绕以下三个方面进行:
(1)面向任务的研究
研究和分析改进一组预定任务的执行性能的学习系统。
(2)认知模型
研究人类学习过程并进行计算机模拟。
(3)理论分析
从理论上探索各种可能的学习方法和独立于应用领域的算法
机器学习是继专家系统之后人工智能应用的又一重要研究领域,也是人工智能和神经计算的核心研究课题之一。但是现有的计算机系统和人工智能系统没有什么学习能力,至多也只有非常有限的学习能力,因而不能满足科技和生产提出的新要求。
遗传算法(Genetic Algorithm)是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法。它借鉴生物界的进化规律(适者生存,优胜劣汰遗传机制)进行随机化搜索,它是由美国的J.Holland教授1975年首先提出,其主要特点是直接对结构对象进行操作,不存在求导和函数连续性的限定;具有内在的隐并行性和更好的全局寻优能力;采用概率化的寻优方法,能自动获取和指导优化的搜索空间,自适应地调整搜索方向,不需要确定的规则。遗传算法的这些性质,已被人们广泛地应用于组合优化、机器学习、信号处理、自适应控制和人工生命等领域,它是现代有关智能计算中的关键技术。
Deep Learning即深度学习,深度学习是机器学习研究中的一个新的领域,其动机在于建立、模拟人脑进行分析学习的神经网络,它模仿人脑的机制来解释数据,例如图像,声音和文本。是机器学习中一种基于对数据进行表征学习的方法。
他的基本思想是:假设我们有一个系统S,它有n层(S1,…Sn),它的输入是I,输出是O,形象地表示为:I =S1=S2=…..=Sn
= O,如果输出O等于输入I,即输入I经过这个系统变化之后没有任何的信息损失,设处理a信息得到b,再对b处理得到c,那么可以证明:a和c的互信息不会超过a和b的互信息。这表明信息处理不会增加信息,大部分处理会丢失信息。保持了不变,这意味着输入I经过每一层Si都没有任何的信息损失,即在任何一层Si,它都是原有信息(即输入I)的另外一种表示。Deep Learning需要自动地学习特征,假设我们有一堆输入I(如一堆图像或者文本),假设设计了一个系统S(有n层),通过调整系统中参数,使得它的输出仍然是输入I,那么就可以自动地获取得到输入I的一系列层次特征,即S1,…, Sn。对于深度学习来说,其思想就是对堆叠多个层,也就是说这一层的输出作为下一层的输入。通过这种方式,就可以实现对输入信息进行分级表达了。
深度学习的主要技术有:线性代数、概率和信息论;欠拟合、过拟合、正则化;最大似然估计和贝叶斯统计;随机梯度下降;监督学习和无监督学习深度前馈网络、代价函数和反向传播;正则化、稀疏编码和dropout;自适应学习算法;卷积神经网络;循环神经网络;递归神经网络;深度神经网络和深度堆叠网络;
LSTM长短时记忆;主成分分析;正则自动编码器;表征学习;蒙特卡洛;受限波兹曼机;深度置信网络;softmax回归、决策树和聚类算法;KNN和SVM;
生成对抗网络和有向生成网络;机器视觉和图像识别;自然语言处理;语音识别和机器翻译;有限马尔科夫;动态规划;梯度策略算法;增强学习(Q-learning)。
随着人工智能的发展,人工智能将会逐渐走入我们的生活、学习、工作中,其实人工智能已经早就渗透到了我们的生活中,小到我们手机里的计算机,Siri,语音搜索,人脸识别等等,大到无人驾驶汽车,航空卫星。在未来,AI极大可能性的去解放人类,他会替代人类做绝大多数人类能做的事情,正如刘慈欣所说:人工智能的发展,它开始可能会代替一部分人的工作,到最后的话,很可能他把90%甚至更高的人类的工作全部代替。吴恩达也表明,人工智能的发展非常快,我们可以用语音讲话跟电脑用语音交互,会跟真人讲话一样自然,这会完全改变我们跟机器交互的办法。自动驾驶对人也有非常大的价值,我们的社会有很多不同的领域,比如说医疗、教育、金融,都会可以用技术来完全改变。
[1] Russell,S.J.Norvig,P.人工智能:一种现代的方法(第3版)北京:清华大学出版社,2013(2016.12重印)
[2]库兹韦尔,人工智能的未来杭州:浙江人民出版社,2016.3
[3]苏楠.人工智能的发展现状与未来展望[J].中小企业管理与科技(上旬刊),2017,(04):107-108.
[4]王超.从AlphaGo的胜利看人工智能的发展历程与应用前景[J].中国新技术新产品,2017,(04):125-126.
[5]朱巍,陈慧慧,田思媛,王红武.人工智能:从科学梦到新蓝海——人工智能产业发展分析及对策[J].科技进步与对策,2016,(21):66-70.
[6]王江涛.浅析人工智能的发展及其应用[J].电子技术与软件工程,2015,(05):264.
[7]杨焱.人工智能技术的发展趋势研究[J].信息与电脑(理论版),2012,(08):151-152.
[8]张妮,徐文尚,王文文.人工智能技术发展及应用研究综述[J].煤矿机械,2009,(02):4-7.
[9]王永忠.人工智能技术在智能建筑中的应用研究[J].科技信息,2009,(03):343+342.
[10]李德毅,肖俐平.网络时代的人工智能[J]中文信息学报,2008,(02):3-9.
[11]李红霞.人工智能的发展综述[J].甘肃科技纵横,2007,(05):17-18
[12]孙科.基于Spark的机器学习应用框架研究与实现[D].上海交通大学,2015.
[13]朱军,胡文波.贝叶斯机器学习前沿进展综述[J].计算机研究与发展,2015,(01):16-26.
[14]何清,李宁,罗文娟,史忠植.大数据下的机器学习算法综述[J].模式识别与人工智能,2014,(04):327-336.
[15]郭亚宁,冯莎莎.机器学习理论研究[J].中国科技信息,2010,(14):208-209+214.
[16]陈凯,朱钰.机器学习及其相关算法综述[J].统计与信息论坛,2007,(05):105-112.
[17]闫友彪,陈元琰.机器学习的主要策略综述[J].计算机应用研究,2004,(07):4-10+13.
[18]张建明,詹智财,成科扬,詹永照.深度学习的研究与发展[J].江苏大学学报(自然科学版),2015,(02):191-200.
[19]尹宝才,王文通,王立春.深度学习研究综述[J].北京工业大学学报,2015,(01):48-59.
[20]刘建伟,刘媛,罗雄麟.深度学习研究进展[J].计算机应用研究,2014,(07):1921-1930+1942
[21]马永杰,云文霞.遗传算法研究进展[J].计算机应用研究,2012,(04):1201-1206+1210.
[22]曹道友.基于改进遗传算法的应用研究[D].安徽大学,2010
人工智能的发展简史
人工智能的传说可以追溯到古埃及,但随着1941年以来电子计算机的发展,技术已最终可以创造出机器智能,“人工智能”(ARTIFICIAL INTELLIGENCE)一词最初是在1956年DARTMOUTH学会上提出的,从那以后,研究者们发展了众多理论和原理,人工智能的概念也随之扩展,在它还不长的历史中,人工智能的发展比预想的要慢,但一直在前进,从40年前出现至今,已经出现了许多AI程序,并且它们也影响到了其它 技术的发展。 1941年的一项发明使信息存储和处理的各个方面都发生了革命.这项同时在美国和德国出现的 发明就是电子计算机.第一台计算机要占用几间装空调的大房间,对程序员来说是场噩梦:仅仅为运行一 个程序就要设置成千的线路.1949年改进后的能存储程序的计算机使得输入程序变得简单些,而且计算机 理论的发展产生了计算机科学,并最终促使了人工智能的出现.计算机这个用电子方式处理数据的发明,为人工智能的可能实现提供了一种媒介.
虽然计算机为AI提供了必要的技术基础,但直到50年代早期人们才注意到人类智能与机器之间 的联系. NORBERT WIENER是最早研究反馈理论的美国人之一.最熟悉的反馈控制的例子是自动调温器.它 将收集到的房间温度与希望的温度比较,并做出反应将加热器开大或关小,从而控制环境温度.这项对反馈 回路的研究重要性在于:WIENER从理论上指出,所有的智能活动都是反馈机制的结果.而反馈机制是有可 能用机器模拟的.这项发现对早期AI的发展影响很大.
1955年末,NEWELL和SIMON做了一个名为逻辑专家(LOGIC THEORIST)的程序.这个程序被许多人 认为是第一个AI程序.它将每个问题都表示成一个树形模型,然后选择最可能得到正确结论的那一枝来求解 问题.逻辑专家对公众和AI研究领域产生的影响使它成为AI发展中一个重要的里程碑.1956年,被认为是 人工智能之父的JOHN MCCARTHY组织了一次学会,将许多对机器智能感兴趣的专家学者聚集在一起进行了一 个月的讨论.他请他们到 VERMONT参加 DARTMOUTH人工智能夏季研究会.从那时起,这个领域被命名为 人工智能.虽然 DARTMOUTH学会不是非常成功,但它确实集中了AI的创立者们,并为以后的AI研究奠定了基础.
DARTMOUTH会议后的7年中,AI研究开始快速发展.虽然这个领域还没明确定义,会议中的一些思想 已被重新考虑和使用了. CARNEGIE MELLON大学和MIT开始组建AI研究中心.研究面临新的挑战:下一步需 要建立能够更有效解决问题的系统,例如在逻辑专家中减少搜索;还有就是建立可以自我学习的系统.
1957年一个新程序,通用解题机(GPS)的第一个版本进行了测试.这个程序是由制作逻辑专家 的同一个组开发的.GPS扩展了WIENER的反馈原理,可以解决很多常识问题.两年以后,IBM成立了一个AI研 究组.HERBERT GELERNETER花3年时间制作了一个解几何定理的程序.
当越来越多的程序涌现时,MCCARTHY正忙于一个AI史上的突破.1958年MCCARTHY宣布了他的新成 果:LISP语言. LISP到今天还在用.LISP的意思是表处理(LIST PROCESSING),它很快就为大多数AI开发者采纳.
1963年MIT从美国政府得到一笔220万美元的资助,用于研究机器辅助识别.这笔资助来自国防部 高级研究计划署(ARPA),已保证美国在技术进步上领先于苏联.这个计划吸引了来自全世界的计算机科学家,加快了AI研究的发展步伐. LOEBNER(人工智能类)
以人类的智慧创造出堪与人类大脑相平行的机器脑(人工智能),对人类来说是一个极具诱惑的领域,人类为了实现这一梦想也已经奋斗了很多个年头了。而从一个语言研究者的角度来看,要让机器与人之间自由交流那是相当困难的,甚至可以说可能会是一个永无答案的问题。人类的语言,人类的智能是如此的复杂,以至于我们的研究还并未触及其导向本质的外延部分的边沿。 以后几年出现了大量程序.其中一个著名的叫SHRDLU.SHRDLU是微型世界项目的一部分,包括 在微型世界(例如只有有限数量的几何形体)中的研究与编程.在MIT由MARVIN MINSKY领导的研究人员发现,面对小规模的对象,计算机程序可以解决空间和逻辑问题.其它如在60年代末出现的STUDENT可以解决代数 问题,SIR可以理解简单的英语句子.这些程序的结果对处理语言理解和逻辑有所帮助.
70年代另一个进展是专家系统.专家系统可以预测在一定条件下某种解的概率.由于当时计算机已 有巨大容量,专家系统有可能从数据中得出规律.专家系统的市场应用很广.十年间,专家系统被用于股市预 测,帮助医生诊断疾病,以及指示矿工确定矿藏位置等.这一切都因为专家系统存储规律和信息的能力而成为可能.
70年代许多新方法被用于AI开发,著名的如MINSKY的构造理论.另外DAVID MARR提出了机器视觉方 面的新理论,例如,如何通过一副图像的阴影,形状,颜色,边界和纹理等基本信息辨别图像.通过分析这些信 息,可以推断出图像可能是什么.同时期另一项成果是PROLOGE语言,于1972年提出. 80年代期间,AI前进更为迅速,并更多地进入商业领域.1986年,美国AI相关软硬件销售高达4.25亿 美元.专家系统因其效用尤受需求.象数字电气公司这样的公司用XCON专家系统为VAX大型机编程.杜邦,通用 汽车公司和波音公司也大量依赖专家系统.为满足计算机专家的需要,一些生产专家系统辅助制作软件的公 司,如TEKNOWLEDGE和INTELLICORP成立了。为了查找和改正现有专家系统中的错误,又有另外一些专家系统被设计出来. 人们开始感受到计算机和人工智能技术的影响.计算机技术不再只属于实验室中的一小群研究人员. 个人电脑和众多技术杂志使计算机技术展现在人们面前.有了像美国人工智能协会这样的基金会.因为AI开发 的需要,还出现了一阵研究人员进入私人公司的热潮。150多所像DEC(它雇了700多员工从事AI研究)这样的公司共花了10亿美元在内部的AI开发组上.
其它AI领域也在80年代进入市场.其中一项就是机器视觉. MINSKY和MARR的成果如今用到了生产线上的相机和计算机中,进行质量控制.尽管还很简陋,这些系统已能够通过黑白区别分辨出物件形状的不同.到1985年美国有一百多个公司生产机器视觉系统,销售额共达8千万美元.
但80年代对AI工业来说也不全是好年景.86-87年对AI系统的需求下降,业界损失了近5亿美元.象 TEKNOWLEDGE和INTELLICORP两家共损失超过6百万美元,大约占利润的三分之一巨大的损失迫使许多研究领 导者削减经费.另一个令人失望的是国防部高级研究计划署支持的所谓智能卡车.这个项目目的是研制一种能完成许多战地任务的机器人。由于项目缺陷和成功无望,PENTAGON停止了项目的经费.
尽管经历了这些受挫的事件,AI仍在慢慢恢复发展.新的技术在日本被开发出来,如在美国首创的模糊逻辑,它可以从不确定的条件作出决策;还有神经网络,被视为实现人工智能的可能途径.总之,80年代AI被引入了市场,并显示出实用价值.可以确信,它将是通向21世纪之匙. 人工智能技术接受检验 在沙漠风暴行动中军方的智能设备经受了战争的检验.人工智能技术被用于导弹系统和预警显示以 及其它先进武器.AI技术也进入了家庭.智能电脑的增加吸引了公众兴趣;一些面向苹果机和IBM兼容机的应用 软件例如语音和文字识别已可买到;使用模糊逻辑,AI技术简化了摄像设备.对人工智能相关技术更大的需求促 使新的进步不断出现.人工智能已经并且将继续不可避免地改变我们的生活。 人工智能的一个比较流行的定义,也是该领域较早的定义,是由约翰·麦卡锡(JOHN MCCARTHY)在1956年的达特矛斯会议(DARTMOUTH CONFERENCE)上提出的:人工智能就是要让机器的行为看起来就象是人所表现出的智能行为一样。但是这个定义似乎忽略了强人工智能的可能性(见下)。另一个定义指人工智能是人造机器所表现出来的智能性。总体来讲,对人工智能的定义大多可划分为四类,即机器“像人一样思考”、“像人一样行动”、“理性地思考”和“理性地行动”。这里“行动”应广义地理解为采取行动,或制定行动的决策,而不是肢体动作。
强人工智能(BOTTOM-UP AI)
强人工智能观点认为有可能制造出真正能推理(REASONING)和解决问题(PROBLEM_SOLVING)的智能机器,并且,这样的机器能将被认为是有知觉的,有自我意识的。强人工智能可以有两类:
类人的人工智能,即机器的思考和推理就像人的思维一样。
非类人的人工智能,即机器产生了和人完全不一样的知觉和意识,使用和人完全不一样的推理方式。
弱人工智能(TOP-DOWN AI)
弱人工智能观点认为不可能制造出能真正地推理(REASONING)和解决问题(PROBLEM_SOLVING)的智能机器,这些机器只不过看起来像是智能的,但是并不真正拥有智能,也不会有自主意识。
主流科研集中在弱人工智能上,并且一般认为这一研究领域已经取得可观的成就。强人工智能的研究则处于停滞不前的状态下。
对强人工智能的哲学争论
“强人工智能”一词最初是约翰·罗杰斯·希尔勒针对计算机和其它信息处理机器创造的,其定义为:
“强人工智能观点认为计算机不仅是用来研究人的思维的一种工具;相反,只要运行适当的程序,计算机本身就是有思维的。”(J SEARLE IN MINDS BRAINS AND PROGRAMS. THE BEHAVIORAL AND BRAIN SCIENCES,VOL. 3,1980)这是指使计算机从事智能的活动。在这里智能的涵义是多义的、不确定的,像下面所提到的就是其中的例子。利用计算机解决问题时,必须知道明确的程序。可是,人即使在不清楚程序时,根据发现(HEU- RISTIC)法而设法巧妙的解决了问题的情况是不少的。如识别书写的文字、图形、声音等,所谓认识模型就是一例。再有,能力因学习而得到的提高和归纳推理、依据类推而进行的推理等,也是其例。此外,解决的程序虽然是清楚的,但是实行起来需要很长时间,对于这样的问题,人能在很短的时间内找出相当好的解决方法,如竞技的比赛等就是其例。还有,计算机在没有给予充分的合乎逻辑的正确信息时,就不能理解它的意义,而人在仅是被给予不充分、不正确的信息的情况下,根据适当的补充信息,也能抓住它的意义。自然语言就是例子。用计算机处理自然语言,称为自然语言处理。
关于强人工智能的争论不同于更广义的一元论和二元论(DUALISM)的争论。其争论要点是:如果一台机器的唯一工作原理就是对编码数据进行转换,那么这台机器是不是有思维的?希尔勒认为这是不可能的。他举了个中文房间的例子来说明,如果机器仅仅是对数据进行转换,而数据本身是对某些事情的一种编码表现,那么在不理解这一编码和这实际事情之间的对应关系的前提下,机器不可能对其处理的数据有任何理解。基于这一论点,希尔勒认为即使有机器通过了图灵测试,也不一定说明机器就真的像人一样有思维和意识。
也有哲学家持不同的观点。DANIEL C. DENNETT 在其著作 CONSCIOUSNESS EXPLAINED 里认为,人也不过是一台有灵魂的机器而已,为什么我们认为人可以有智能而普通机器就不能呢?他认为像上述的数据转换机器是有可能有思维和意识的。
有的哲学家认为如果弱人工智能是可实现的,那么强人工智能也是可实现的。比如SIMON BLACKBURN在其哲学入门教材 THINK 里说道,一个人的看起来是“智能”的行动并不能真正说明这个人就真的是智能的。我永远不可能知道另一个人是否真的像我一样是智能的,还是说她/他仅仅是看起来是智能的。基于这个论点,既然弱人工智能认为可以令机器看起来像是智能的,那就不能完全否定这机器是真的有智能的。BLACKBURN 认为这是一个主观认定的问题。
需要要指出的是,弱人工智能并非和强人工智能完全对立,也就是说,即使强人工智能是可能的,弱人工智能仍然是有意义的。至少,今日的计算机能做的事,像算术运算等,在百多年前是被认为很需要智能的。
基础篇:问题1.人工智能的发展简史是怎样的?1936-1969(1/3)
点击收听课程音频
在我们开始探讨人工智能的相关问题之前,还是先简单回顾一下人工智能发展简史。
一、人工智能的诞生(20世纪三十~五十年代)
人工智能的概念最早是由约翰·麦卡锡(John McCarthy)在1956年著名的达特矛斯会议(Dartmouth Conference)上提出: 人工智能是指让机器的行为看起来就象是人类所表现出的智能行为一样。 因为社会在不断进步和发展,所以对新技术的认知不可避免存在时空的局限性。人工智能这个定义在六十年后再往回看,已经被赋予了更多新的内容, 个别领域的人工智能应用已经不仅仅是象人类行为一样,甚至已经超越了人类,更快速、更准确、更强大。
这个定义强调人工智能是人造机器,所“表现”出来一定的智能性也就是 弱人工智能 。主流科学研究也是集中在弱人工智能上,并且取得可观的成就。那既然说到了弱人工智能,就不得说与之对应的另一个分类就是强人工智能。
强人工智能一般观点认为: 人类有可能制造出真正能推理和解决问题的智能机器 ,具有以下几种特征:
1、机器有知觉和自我意识;2、机器可以独立思考问题并制定解决问题的最优方案; 3、有自己的价值观和世界观体系; 4、有和生物一样的各种本能,比如生存和安全需求; 5、在某种意义上可以看作一种新的文明。
比如在好莱坞出品的人工智能的题材科幻电影中,很多机器人都表现出了很强的学习认知能力以及自我意识,这样的人工智能就可以认为属于强人工智能。但遗憾的是当前我们科技发展水平还没有能力创造任何种类的强人工智能。还有 弱人工智能与强人工智能并不是发展阶段的关系,弱人工智能不一定能发展为强人工智能,二者发展路径与理念存在根本的不同。
让我们来回顾一下在人工智能诞生时期的伟大历史事件:
1936年,数学家 阿隆佐·邱奇 (Alonzo Churc) 和艾伦·图灵 ( Alan Turing) 命名邱奇-图灵论题,提出 所有计算或算法都可以由一台图灵机来执行,这也是构建计算机科学的基础之一。 图灵这个人相信大家都有了解了,二战时发明了解码机破解了德国人密码,改变了战争的进程。并且他发表的图灵计算机论文也是现代计算机的原型。他把生物的进化也看做是一种程序,也就是图灵机的基本概念,一切都是数学公式的表达,然后按程序进行。
1943年, 沃伦 · 麦卡洛克 (WarrenMcCulloch) 和沃尔特 · 皮茨 (WalterPitts) 两位科学家提出了 “ 神经网络 ” 的概念,正式开启了 AI 的大门。 虽然在当时仅是一个数学理论,但有着极其深远的影响,因为这个理论让人们了解到计算机可以如人类大脑一样进行“深度学习”,描述了人造神经元网络如何实现逻辑功能。
1945年博弈论的创立者 冯·诺依曼(John.Von.N eumann)提出了存储程序的概念,在计算机领域建立了不朽的功勋。 他的这一思想被誉为电子计算机时代的开始。到今天计算机的体系结构还基本上是冯 · 诺依曼型。
1946年2月14日情人节那天,基于 图灵和冯 · 诺伊曼 学说,计算机的先驱者莫克利(J.W.Mauchly)与他的研究生埃克特(J.P.Eckert)在美国合作研发了世界上第一台通用计算机, 这 是现代计算机发展史上重要的里程碑,也 为人工智能的出现奠定了硬件基础。
1947年,神经学的研究发现大脑结构是由神经元组成的电子网络,其电平只存在“有”和“无”两种状态,不存在中间状态,这也是人类研究大脑结构的重大成果。
1948年,计算机时代刚刚进入黎明时, 诺伯特 · 维纳 ( Norbert Wiener) 就提出了一种“控制论”的概念。他是最先预见到信息技术双重可能性的人,这把双刃剑可能也逃离人类掌控并反过来控制人类。他也成为了最早对机器智能的到来提出批判的学者。
1950 年,图灵发表了一篇划时代的论文,预言了创造出具有真正智能的机器的可能性。 图灵测试是人工智能哲学方面第一个严肃的提案。著名的图灵测试诞生: 如果一台机器能够与人类 ( 通过电子设备 ) 展开间接对话而不能被辨别出其机器身份,那么称这台机器具有智能。 他也因此被誉为“人工智能之父”。同一年,图灵还预言了人类将会创造出具有真正智能的机器的可能性。
1951年, 克 里斯托弗 · 斯特雷奇 (ChristopherStrachey) 使用写出了一个西洋跳棋程序; 迪特里希 · 普林茨 (DietrichPrinz) 写出了一个国际象棋程序。 从这开始游戏 AI 就一直被当做评价 AI 发展水平的标准。
1955 年,艾伦·纽厄尔 (Allen Newell) 和赫伯特 · 西蒙 (Herbert Simon) 在 J. C. 肖 的协助下开发了“逻辑理论家”。这个程序通过模拟人证明符号逻辑定理的思维活动,证明《数学原理》中的38个定理,其中某些证明比原著更加简明合理。
1956 年,人工智能诞生 马文· 明斯基 (Marvin Minsky) 与 约翰· 麦卡锡 (John McCarthy) 、克劳德· 香农 (Claude Shannon) 等人一起在美国达特茅斯学院发起并组织“达特茅斯会议”,麦卡锡首次提出了“人工智能”这个概念,纽厄尔和西蒙则展示了编写的“逻辑理论家”。会议上AI的名称和任务得以确定,同时出现了最初的成就和最早的一批研究者,因此这一事件被广泛认为是AI诞生的标志,被誉为“人工智能的起点”。
1956 年乔治 · 戴沃尔戴沃尔 (Ge orge Devol ) 与约瑟夫 · 恩格尔博格 ( Joseph F·Engelberger ) , 创建了世界上第一家机器人公司,名为“尤尼梅新”。
1956 年,奥利弗·萨尔夫瑞德 (Oliver Selfridge) 研制出第一个字符识别程序,开辟了模式识别这一新的领域。
1957年, 艾伦·纽厄尔 (Allen Newell) 和 赫伯特 · 西蒙 (Herbert Simon) 等人开始研究一种不依赖于具体领域的通用问题求解器,他们称之为GPS(General Problem Solver),这一时期,搜索式推理是许多AI程序使用相同的基本算法。原理就像在迷宫中寻找出路一般;如果遇到了死胡同则进行回溯选择其他分支路径往前,这就是“搜索式推理”。这算法主要困难是在很多问题中,线路总数的可能性是一个天文数字。
1958年,美国国防部先进研究项目局(Defense Advanced ResearchProjects Agency)成立,主要负责高新技术的研究、开发和应用。几十年来DARPA已为美军研发成功了大量的先进武器系统,同时为美国积累了大量的科技资源储备,并且引领着美国乃至世界军民高技术研发的潮流。
总结一下,最初的人工智能研究是20世纪30年代末到50年代初的一系列科学研究成果交汇的创新的产物。在这些领域的顶级研究人员本身也是多学科跨界的专家,因此需要集各家所长的人工智能,才得以快速发展,其中主要的几个学科成果是:
1、神经学研究发现神经网络;2、维纳的控制论描述了电子网络研究3、香农信息论的数字信号研究;4、图灵的计算理论证明数字信号可以描述任何形式的计算,5、冯·诺依曼提出了存储程序的概念,这些密切相关的想法融合在一起,展现了构建一个电子大脑的可能性,研究如何用机器来模拟人类智能的学科产生了。
二、人工智能逻辑推理时期 (20世纪六十年代)
在这一时期,一般认为只要机器被赋予了逻辑推理能力就可以实现人工智能。 不过此后人们失望的发现,制造出来的机器仅仅具备了基本的逻辑推理能力,还远远达不到“智能”的水平。
早在1958年, 约翰· 麦卡锡 (John McCarthy) 提出了“纳谏者”的程序构想,将逻辑学引入了AI研究界。到了六十年代末麦卡锡和他的学生们发现,实现这一想法运算复杂度极高:即便是证明很简单的定理也需要天文数字的运算步骤。此时,麦卡锡认为,人类怎么思考是无关紧要的:真正的目标应该是解决问题的机器,而不是模仿人类进行思考的机器。因此麦卡锡等人一派也被称为“简约派”。
这一时期的重大事件有:
1962年,创立6年时间的公司 “尤尼梅特” , 推出了世界上首款工业机器人“尤尼梅特”, 开始在通用汽车公司的装配线上服役。
1963年6月,麻省理工学院MIT从DARPA,国防部先进研究项目局获得经费资助,其中包括 马文· 明斯基 (MarvinMinsky) 和麦卡锡 (John McCarthy) 五年前建立的 AI 研究组。 此后DARPA每年提供三百万美元,直到七十年代为止。
1966年到1972年间,美国斯坦福国际研究所(SRI)研制了具备一定人工智能移动式机器人Shakey,,它能够自主进行感知、环境建模、行为规划并执行任务(如寻找木箱并将其推到指定目的位置)。这是首台采用了人工智能学的移动机器人,引发了人工智能早期研究工作爆发。
1966 年, MIT 的系统工程师约瑟夫·魏泽堡 (Joseph Weizenbaum 和精神病学家 肯尼思·科尔比 (Kenneth Colby) 发布了世界上第一个聊天机器人艾丽莎 Eliza 。智能之处在于她能通过脚本“理解”简单的自然语言,并能产生类似人类的互动。而其中最著名的脚本便是模拟罗吉斯心理治疗师的Doctor。作为最早的有情感人工智能机器,可以帮助用户和机器进行对话,缓解压力和抑郁,同时这也是人工智能语音助手最早的雏形。
1968年12,加州斯坦福研究所的 道格·恩格勒巴特 ( Douglas C. Engelbart) 发明了鼠标,被誉为“鼠标之父”。 如果你认为发明鼠标已经很厉害的话,那他还有个更厉害发明,正是他提出了超链接概念,而超链接原理几十年后成了现代互联网的根基。他关于人工智能发展的理念是提倡“智能增强”而非取代人类。
了解最新课程内容,点击 原文链接 或者搜索"知识星球"小程序,在里面搜索“人工智能进化论”订阅课程,加入圈子讨论或者向作者提问。 或者加wx:AI61825
结语:以上就是首席CTO笔记为大家整理的关于人工智能简史综述怎么写的全部内容了,感谢您花时间阅读本站内容,希望对您有所帮助,更多关于人工智能简史综述怎么写的相关内容别忘了在本站进行查找喔。