首页>>人工智能->人工智能新职业机会有哪些(2023年最新解答)

人工智能新职业机会有哪些(2023年最新解答)

时间:2023-12-08 本站 点击:0

导读:本篇文章首席CTO笔记来给大家介绍有关人工智能新职业机会有哪些的相关内容,希望对大家有所帮助,一起来看看吧。

随着人工智能的发展与普及,会出现哪些新的工作岗位?

众所周知,现在人工智能已经让部分人类产生某种被威胁的情绪,他们认为人工智能技术的发展,会给他们的职业带来冲击,甚至是被人工智能取代。当然,我们也不能怀疑这种威胁是毫无根据的,但是,我们是不是要换一种方向来思考呢,比如在互联网产生之前,并没有什么互联网产品经理、互联网运营、网购职业,再到我们现在互联网普遍存在之下,各种互联网职业为各色人才提供了就业渠道。同理,人工智能技术是否也会这样,创造出关于人工智能相关的职业?比如在无人驾驶方面,想让无人驾驶汽车识别路标和行人的话,就必须利用大量相关视频对算法进行训练。而这些脚本则需要人类手动添加标签。这一过程已经给成千上万人创造了就业机会。一旦算法开始运作,还要由人类负责验证它的表现,并通过反馈来提升效果。总而言之,人工智能也是利弊共存吧,会让一些人失去职业,但也会创造一些机会,让部分人以此为谋生手段,生存下去。

人工智能从事什么工作?

人工智能专业就业方向有:科学研究,工程开发,计算机方向,软件工程,应用数学,电气自动化,通信,机械制造等相关领域的有关企业、研究机构从事产品设计、制造、新技术科研开发、应用研究与技术管理等岗位等工作。在信息通信、计算机、智能技术类等学科方向的学校或科研单位继续深造。

人工智能专业就业方向及就业前景怎么样

1人工智能专业就业方向是什么

人工智能专业的就业方向:

(1) 算法工程师,进行人工智能相关前沿算法的研究,包括机器学习、知识应用、智能决策等技术的应用。

(2) 程序开发工程师,完成算法实现,项目落地及各个功能模块的整合。

(3) 人工智能运维工程师,大数据与AI产品相关运营、维护产品产品研发;相关组件的运维工具系统的开发与建设;提供大数据与AI云产品客户支持。

(4) 智能机器人研发工程师,研发方向主要从事机器人控制系统开发、高精度器件的设计研发等。

(5) AI硬件专家,创建AI硬件的工业操作工作,大科技公司目前已将采取了措施,来建立自己的专业芯片。

2人工智能专业就业前景怎么样

近年来,中国人工智能发展迅速,国家也高度重视人工智能领域的发展。我国人工智能人才目前缺口超过500万,国内的供求比例为1:10,供求比例严重失调。

人工智能工程技术人员是指从事与人工智能相关算法、深度学习等相关的多种技术的分析、研究、开发,并对人工智能系统进行设计、优化、运维、管理和应用的工程技术人员。人工智能专业就业方向有科学研究、工程开发、计算机方向、软件工程、应用数学、电气自动化通信、机械制造等。

随着人工智能的持续火爆,越来越多求职者的求职方向转为人工智能相关岗位,特别是偏基础层面的岗位。以算法工程师为例,供应增幅超过100%。从薪酬来看,人工智能的就业薪资目前处于各个行业薪资水平前列。

随着当前人工智能企业增多,人工智能人才的紧缺程度加剧,特别是语音识别岗位的人才供需缺口更大。

人工智能作为被广泛认可的具有“未来”特点的专业将在未来技术学院的建设中得到进一步发展。

学人工智能以后从事什么工作 就业方向有哪些

学习人工智能未来可以从事以下岗位: 算法工程师:进行人工智能相关前沿算法的研究,包括机器学习、知识应用等,具体来看一下!

人工智能专业就业方向

就业方向主要有:科研机构(机器人研究所等)、软硬件开发人员、高校讲师等。在国内的话就业前景是比较好的,国内产业升级,IT行业的转型工业和机器人和智能机器人以及可穿戴设备的研发将来都是强烈的热点。

人工智能专业就业前景

第一:智能化是未来的重要趋势之一。随着互联网的发展,大数据、云计算和物联网等相关技术会陆续普及应用,在这个大背景下,智能化必然是发展趋势之一。人工智能相关技术将首先在互联网行业开始应用,然后陆续普及到其他行业。所以,从大的发展前景来看,人工智能相关领域的发展前景还是非常广阔的。

第二:产业互联网的发展必然会带动人工智能的发展。互联网当前正在从消费互联网向产业互联网发展,产业互联网将综合应用物联网、大数据和人工智能等相关技术来赋能广大传统行业,人工智能作为重要的技术之一,必然会在产业互联网发展的过程中释放出大量的就业岗位。

第三:人工智能技术将成为职场人的必备技能之一。随着智能体逐渐走进生产环境,未来职场人在工作过程中将会频繁的与大量的智能体进行交流和合作,这对于职场人提出了新的要求,就是需要掌握人工智能的相关技术。从这个角度来看,未来掌握人工智能技术将成为一个必然的趋势,相关技能的教育市场也会迎来巨大的发展机会。

人工智能专业目前的就业前景怎么样

人工智能好就业吗

人工智能就业机会很多,发展前景很好。随着5G时代的到来,智能技术在社会各个领域的应用进一步扩大,人工智能发展迅速,人工智能方向的毕业生也能在各领域大展拳脚,就业形势良好。毕业生可以从事研发工程师、数据挖掘工程师、算法工程师等岗位,在互联网行业中都是炙手可热,并且收入非常可观的。

人工智能技术发展,智能机器人、智能化电器、智慧物流、智能化社区等创新性应用逐渐深入到人类的社会生活史.人类生活方式正不断发生改变。在未来发展中,智能技术的应用将致力于改变医疗、起居、出行驾驶等各个方面,因此该专业的学生就业前景十分广阔。

人工智能专业就业方向

⑴)搜索方向:百度、谷歌、微软、yahoo等(包括智能搜索、语音搜索、图片搜索、视频搜索等都是未来的方向)(⑵医学图像处理:医疗设备、医疗器械很多都会涉及到图像处理和成像,大型的公司有西门子、GE、飞利浦等。

(3)计算机视觉和模式识别方向:前面说过的指纹识别、人脸识别、虹膜识别等;还有一个大的方向是车牌识别;目前鉴于视频监控是一个热点问题,做跟踪和识别也不错;

(4)还有一些图像处理方面的人才需求的公司,如威盛、松下、索尼、三星等。

另外,Al方向的人才都是高科技型的,在待遇方面自然相对比较丰厚,所以很这个方向很有发展前途。

人工智能作为一个新兴专业近两年得到了快速的发展,一方面原因是人工智能领域的人才需求前景比较广阔,另一方面原因是人工智能方向的人才培养基础比较好,下面我就从这两个方面作为切入点,给人工智能专业同学一些建议。

学习人工智能有哪些就业方向?

人工智能技术关系到人工智能产品是否可以顺利应用到我们的生活场景中。在人工智能领域,它普遍包含了机器学习、知识图谱、自然语言处理、人机交互、计算机视觉、生物特征识别、AR/VR七个关键技术。

一、机器学习

机器学习(MachineLearning)是一门涉及统计学、系统辨识、逼近理论、神经网络、优化理论、计算机科学、脑科学等诸多领域的交叉学科,研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,是人工智能技术的核心。基于数据的机器学习是现代智能技术中的重要方法之一,研究从观测数据(样本)出发寻找规律,利用这些规律对未来数据或无法观测的数据进行预测。根据学习模式、学习方法以及算法的不同,机器学习存在不同的分类方法。

根据学习模式将机器学习分类为监督学习、无监督学习和强化学习等。

根据学习方法可以将机器学习分为传统机器学习和深度学习。

二、知识图谱

知识图谱本质上是结构化的语义知识库,是一种由节点和边组成的图数据结构,以符号形式描述物理世界中的概念及其相互关系,其基本组成单位是“实体—关系—实体”三元组,以及实体及其相关“属性—值”对。不同实体之间通过关系相互联结,构成网状的知识结构。在知识图谱中,每个节点表示现实世界的“实体”,每条边为实体与实体之间的“关系”。通俗地讲,知识图谱就是把所有不同种类的信息连接在一起而得到的一个关系网络,提供了从“关系”的角度去分析问题的能力。

知识图谱可用于反欺诈、不一致性验证、组团欺诈等公共安全保障领域,需要用到异常分析、静态分析、动态分析等数据挖掘方法。特别地,知识图谱在搜索引擎、可视化展示和精准营销方面有很大的优势,已成为业界的热门工具。但是,知识图谱的发展还有很大的挑战,如数据的噪声问题,即数据本身有错误或者数据存在冗余。随着知识图谱应用的不断深入,还有一系列关键技术需要突破。

三、自然语言处理

自然语言处理是计算机科学领域与人工智能领域中的一个重要方向,研究能实现人与计算机之间用自然语言进行有效通信的各种理论和方法,涉及的领域较多,主要包括机器翻译、机器阅读理解和问答系统等。

机器翻译

机器翻译技术是指利用计算机技术实现从一种自然语言到另外一种自然语言的翻译过程。基于统计的机器翻译方法突破了之前基于规则和实例翻译方法的局限性,翻译性能取得巨大提升。基于深度神经网络的机器翻译在日常口语等一些场景的成功应用已经显现出了巨大的潜力。随着上下文的语境表征和知识逻辑推理能力的发展,自然语言知识图谱不断扩充,机器翻译将会在多轮对话翻译及篇章翻译等领域取得更大进展。

语义理解

语义理解技术是指利用计算机技术实现对文本篇章的理解,并且回答与篇章相关问题的过程。语义理解更注重于对上下文的理解以及对答案精准程度的把控。随着MCTest数据集的发布,语义理解受到更多关注,取得了快速发展,相关数据集和对应的神经网络模型层出不穷。语义理解技术将在智能客服、产品自动问答等相关领域发挥重要作用,进一步提高问答与对话系统的精度。

问答系统

问答系统分为开放领域的对话系统和特定领域的问答系统。问答系统技术是指让计算机像人类一样用自然语言与人交流的技术。人们可以向问答系统提交用自然语言表达的问题,系统会返回关联性较高的答案。尽管问答系统目前已经有了不少应用产品出现,但大多是在实际信息服务系统和智能手机助手等领域中的应用,在问答系统鲁棒性方面仍然存在着问题和挑战。

自然语言处理面临四大挑战:

一是在词法、句法、语义、语用和语音等不同层面存在不确定性;

二是新的词汇、术语、语义和语法导致未知语言现象的不可预测性;

三是数据资源的不充分使其难以覆盖复杂的语言现象;

四是语义知识的模糊性和错综复杂的关联性难以用简单的数学模型描述,语义计算需要参数庞大的非线性计算

四、人机交互

人机交互主要研究人和计算机之间的信息交换,主要包括人到计算机和计算机到人的两部分信息交换,是人工智能领域的重要的外围技术。人机交互是与认知心理学、人机工程学、多媒体技术、虚拟现实技术等密切相关的综合学科。传统的人与计算机之间的信息交换主要依靠交互设备进行,主要包括键盘、鼠标、操纵杆、数据服装、眼动跟踪器、位置跟踪器、数据手套、压力笔等输入设备,以及打印机、绘图仪、显示器、头盔式显示器、音箱等输出设备。人机交互技术除了传统的基本交互和图形交互外,还包括语音交互、情感交互、体感交互及脑机交互等技术。

五、计算机视觉

计算机视觉是使用计算机模仿人类视觉系统的科学,让计算机拥有类似人类提取、处理、理解和分析图像以及图像序列的能力。自动驾驶、机器人、智能医疗等领域均需要通过计算机视觉技术从视觉信号中提取并处理信息。近来随着深度学习的发展,预处理、特征提取与算法处理渐渐融合,形成端到端的人工智能算法技术。根据解决的问题,计算机视觉可分为计算成像学、图像理解、三维视觉、动态视觉和视频编解码五大类。

目前,计算机视觉技术发展迅速,已具备初步的产业规模。未来计算机视觉技术的发展主要面临以下挑战:

一是如何在不同的应用领域和其他技术更好的结合,计算机视觉在解决某些问题时可以广泛利用大数据,已经逐渐成熟并且可以超过人类,而在某些问题上却无法达到很高的精度;

二是如何降低计算机视觉算法的开发时间和人力成本,目前计算机视觉算法需要大量的数据与人工标注,需要较长的研发周期以达到应用领域所要求的精度与耗时;

三是如何加快新型算法的设计开发,随着新的成像硬件与人工智能芯片的出现,针对不同芯片与数据采集设备的计算机视觉算法的设计与开发也是挑战之一。

六、生物特征识别

生物特征识别技术是指通过个体生理特征或行为特征对个体身份进行识别认证的技术。从应用流程看,生物特征识别通常分为注册和识别两个阶段。注册阶段通过传感器对人体的生物表征信息进行采集,如利用图像传感器对指纹和人脸等光学信息、麦克风对说话声等声学信息进行采集,利用数据预处理以及特征提取技术对采集的数据进行处理,得到相应的特征进行存储。

识别过程采用与注册过程一致的信息采集方式对待识别人进行信息采集、数据预处理和特征提取,然后将提取的特征与存储的特征进行比对分析,完成识别。从应用任务看,生物特征识别一般分为辨认与确认两种任务,辨认是指从存储库中确定待识别人身份的过程,是一对多的问题;确认是指将待识别人信息与存储库中特定单人信息进行比对,确定身份的过程,是一对一的问题。

生物特征识别技术涉及的内容十分广泛,包括指纹、掌纹、人脸、虹膜、指静脉、声纹、步态等多种生物特征,其识别过程涉及到图像处理、计算机视觉、语音识别、机器学习等多项技术。目前生物特征识别作为重要的智能化身份认证技术,在金融、公共安全、教育、交通等领域得到广泛的应用。

七、VR/AR

虚拟现实(VR)/增强现实(AR)是以计算机为核心的新型视听技术。结合相关科学技术,在一定范围内生成与真实环境在视觉、听觉、触感等方面高度近似的数字化环境。用户借助必要的装备与数字化环境中的对象进行交互,相互影响,获得近似真实环境的感受和体验,通过显示设备、跟踪定位设备、触力觉交互设备、数据获取设备、专用芯片等实现。

虚拟现实/增强现实从技术特征角度,按照不同处理阶段,可以分为获取与建模技术、分析与利用技术、交换与分发技术、展示与交互技术以及技术标准与评价体系五个方面。获取与建模技术研究如何把物理世界或者人类的创意进行数字化和模型化,难点是三维物理世界的数字化和模型化技术;分析与利用技术重点研究对数字内容进行分析、理解、搜索和知识化方法,其难点是在于内容的语义表示和分析;交换与分发技术主要强调各种网络环境下大规模的数字化内容流通、转换、集成和面向不同终端用户的个性化服务等,其核心是开放的内容交换和版权管理技术;展示与交换技术重点研究符合人类习惯数字内容的各种显示技术及交互方法,以期提高人对复杂信息的认知能力,其难点在于建立自然和谐的人机交互环境;标准与评价体系重点研究虚拟现实/增强现实基础资源、内容编目、信源编码等的规范标准以及相应的评估技术。

目前虚拟现实/增强现实面临的挑战主要体现在智能获取、普适设备、自由交互和感知融合四个方面。在硬件平台与装置、核心芯片与器件、软件平台与工具、相关标准与规范等方面存在一系列科学技术问题。总体来说虚拟现实/增强现实呈现虚拟现实系统智能化、虚实环境对象无缝融合、自然交互全方位与舒适化的发展趋势

人工智能行业会产生哪些新的工作机会?

业内分析,得益于AI技术的兴起,

以下一些行业岗位将呈现出显着的增长趋势。

数据科学家

数据科学家属于分析型数据专家中的一个新类别,他们对数据进行分析来了解复杂的行为、趋势和推论,发掘隐藏的一些见解,帮助企业做出更明智的业务决策。由于AI推动了创造和收集数据的趋势发展,所以我们也可以看到未来对于数据科学家的需求也将日益增加。据IBM预测,到2020年,对于数据科学家的需求增长幅度将达到28%,数据科学家、数据开发人员和数据工程师的年需求量将达到70万人。其中一般的AI领域专家,包括刚踏出校园的博士生以及相对教育程度低一些、但是有几年工作经验的专业人士,每年薪水加公司股票可能在30万美元至50万美元范围内。

AI/机器学习工程师

大多数情况下,机器学习工程师都是与数据科学家合作来同步他们的工作。因此,对于机器学习工程师的需求可能也会出现类似于数据科学家需求增长的趋势。数据科学家在统计和分析方面具有更强的技能,而机器学习工程师则应该具备计算机科学方面的专业知识,他们通常需要更强大的编码能力。

据Gartner报告显示,有一位首席信息官想要在纽约聘用AI技术的专业人才,却发现人才库只有32人,其中只有16人符合潜在候选人标准。而在这16人中,只有8人正在积极寻找新就业机会。

数据标签专业人员

随着数据收集几乎在每个垂直领域实现普及,数据标签专业人员的需求也将在未来呈现激增之势。

AI硬件专家

AI领域内另外一种日益增长的蓝领工作是负责创建AI硬件(如GPU芯片)的工业操作工作。大科技公司目前已经采取了措施,来建立自己的专业芯片。

英特尔正在为机器学习专门打造一个芯片。与此同时,IBM和高通正在创建一个反映神经网络设计、并且可以像神经网络一样运行的硬件架构。据FacebookAI研究总监YannLeCun表示,Facebook也在帮助高通开发与机器学习相关的技术。随着人工智能芯片和硬件需求的不断增长,致力于生产这些专业产品的工业制造业工作岗位需求将会有所增长。

数据保护专家

由于有价值的数据、机器学习模型和代码不断增加,未来也会出现对于数据保护的需求,因此也就会产生对于数据库保护IT专家的需求。

信息安全控制的许多层面和类型都适用于数据库,包括:访问控制、审计、认证、加密、整合控制、备份、应用安全和数据库安全应用统计方法。

数据库在很大程度上是通过网络安全措施(如防火墙和基于网络的入侵检测系统)来抵御黑客攻击。保护数据库系统及其中的程序、功能和数据的安全这一工作将变得越来越重要,因为网络开放程序越来越高。

AI业务拓展经理

有一件事是AI做不到的,而且在一段时间内也无法做到。这件事就是销售它自己。销售AI(不管是“原始”计算形态,还是打包进一项商用服务中)需要投入人力。AI业务拓展经理将处于计算机科学发展和企业优势的前沿阵地。

人工智能是时代发展的必经之路,

在未来AI与过去所有的其他颠覆性技术一样,

为我们带来许多新就业机会。

结语:以上就是首席CTO笔记为大家介绍的关于人工智能新职业机会有哪些的全部内容了,希望对大家有所帮助,如果你还想了解更多这方面的信息,记得收藏关注本站。


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如若转载,请注明出处:/AI/19937.html