首页>>人工智能->怎么才能学人工智能呢(2023年最新分享)

怎么才能学人工智能呢(2023年最新分享)

时间:2023-12-08 本站 点击:0

导读:很多朋友问到关于怎么才能学人工智能呢的相关问题,本文首席CTO笔记就来为大家做个详细解答,供大家参考,希望对大家有所帮助!一起来看看吧!

人工智能应该怎么学?

这是人工智能的的全部课程,要是感兴趣的话可以了解一下:

第一阶段

前端开发 Front-end Development

1、桌面支持与系统管理(计算机操作基础Windows7)

2、Office办公自动化

3、WEB前端设计与布局

4、javaScript特效编程

5、Jquery应用开发

第二阶段

核心编程 Core Programming

1、Python核心编程

2、MySQL数据开发

3、Django 框架开发

4、Flask web框架

5、综合项目应用开发

第三阶段

爬虫开发 Reptile Development

1、网络爬虫开发

2、爬虫项目实践应用

3、机器学习算法

4、Python人工智能数据分析

5、python人工智能高级开发

第四阶段

人工智能 PArtificial Intelligence

1、实训一:WEB全栈开发

2、实训二:人工智能终极项目实战

零基础应该如何学人工智能?

1、打好基础,学习高数和Python编程语言 

高等数学是学习人工智能的基础,因为人工智能里面会设计很多数据、算法的问题,而这些算法又是数学推导出来,所以你要理解算法,就需要先学习一部分高数知识。 先将高等数学基础知识学透,从基础的数据分析、线性代数及矩阵等等入门,只有基础有了,才会层层积累,不能没有逻辑性的看一块学一块。 再就是学习python编程语言,Python具有丰富和强大的库,作为人工智能学习的基础编程语言是非常适合的。一方面Python是脚本语言,简便,拿个记事本就能写,写完拿控制台就能跑;另外,Python非常高效,效率比java、r、matlab高。matlab虽然包也多,但是效率是这四个里面最低的。

2、阶段晋升,开始学习机器学习算法 

掌握以上基础以后,就要开始学习完机器学习的算法,并通过案例实践来加深理解和掌握。机器学习无疑是当前数据分析领域的一个热点内容。很多人在平时的工作中都或多或少会用到机器学习的算法。机器学习的算法很多。很多时候困惑人们都是,很多算法是一类算法,而有些算法又是从其他算法中延伸出来的。还有很多机器学习的小案例等着你来挑战,前面掌握的好,后面当然轻松很多,步入深度学习。

3、不断挑战,接触深度学习

深度学习需要机器大量的经过标注的数据来训练模型,所以你的掌握一些数据挖掘和数据分析的技能,然后你再用来训练模式。在这里你可能会有疑问,据说深度学习,好像有很多神经网络,看着好复杂,编辑这些神经网络那不是太难了,你大可放心,谷歌、亚马逊、微软等大公司已经把这些神经网络模型封装在他们各自的框架里面了,你只需要调用就可以了。 

要怎么学习人工智能

人工智能是一个包含很多学科的交叉学科,你需要了解计算机的知识、信息论、控制论、图论、心理学、生物学、热力学,要有一定的哲学基础,有科学方法论作保障。人工智能学习路线最新版本在此奉上:

首先你需要数学基础:高等数学,线性代数,概率论数理统计和随机过程,离散数学,数值分析;

其次需要算法的积累:人工神经网络,支持向量机,遗传算法等等算法;

当然还有各个领域需要的算法,比如你要让机器人自己在位置环境导航和建图就需要研究SLAM;

算法很多需要时间的积累。

然后,需要掌握至少一门编程语言,毕竟算法的实现还是要编程的;如果深入到硬件,一些电类基础课必不可少;

人工智能一般要到研究生才会去学,本科也就是蜻蜓点水看看而已,毕竟需要的基础课过于庞大。

刚才提到的这些学科的每一门都是博大精深的,但同时很多事物都是相通的,你学了很多知识有了一定的基础的时候再看相关知识就会触类旁通,很容易。在这中间关键是要有自己的思考,不能人云亦云。毕竟,人工智能是一个正在发展并具有无穷挑战和乐趣的学科。

人工智能的首选语言是Python,因此大家一定要学好Python语言。人工智能学习的重点是机器学习:

1、斯坦福大学公开课 :机器学习课程

2、数据分析竞赛kaggle

3、Deep learning-author Joshua Bengio

机器学习书单python实战编程

1、Python for Data Analysis

2、SciPy and NumPy

3、Machine Learning for Hackers

4、Machine Learning in Action

如何学好新专业人工智能?

先将高等数学基础知识学透,从基础的数据分析、线性代数及矩阵等等入门,只有基础有了,才会层层积累,不能没有逻辑性的看一块学一块。再就是学习python编程语言,Python具有丰富和强大的库,作为人工智能学习的基础编程语言是非常适合的。

第一:重视数学课程的学习。数学对于人工智能专业的学习具有非常现实的意义,目前人工智能领域的诸多研究方向,都离不开数学知识,所以一个扎实的数学基础是能够学好人工智能知识的前提。

人工智能技术的基础涉及到数据、算力和算法三大方面,其中数据和算力可以通过数据中心来提供,而研发人员的工作重点就是完成算法的设计。

第二:重视人工智能基础知识的学习。人工智能基础知识涉及到人工智能的基础知识体系,其中机器学习部分一定要重点关注。机器学习可以作为打开人工智能知识大门的钥匙,同时机器学习在大数据等领域也有广泛的应用。

在学习机器学习知识的过程中,也会全面培养自己的研发方法,从而逐渐提升对于人工智能技术的认知。

第三:选择一个主攻方向。人工智能领域的研究方向比较多,选择一个主攻方向会有更好的学习体验,当前可以重点关注一下视觉和自然语言处理这两个大方向,目前很多人工智能平台也是基于这两个技术体系打造的。

结语:以上就是首席CTO笔记为大家整理的关于怎么才能学人工智能呢的相关内容解答汇总了,希望对您有所帮助!如果解决了您的问题欢迎分享给更多关注此问题的朋友喔~


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如若转载,请注明出处:/AI/20010.html