首页>>人工智能->什么叫专用人工智能(常用的人工智能技术)

什么叫专用人工智能(常用的人工智能技术)

时间:2023-12-08 本站 点击:0

导读:很多朋友问到关于什么叫专用人工智能的相关问题,本文首席CTO笔记就来为大家做个详细解答,供大家参考,希望对大家有所帮助!一起来看看吧!

人工智能指的是什么

什么是人工智能?简单地说,我们可以将其定义为技术系统解决问题或执行人类思维和能力的典型任务和活动的能力。如果我们看一下计算领域,我们可以将 AI 识别为处理能够自主“行动”(解决问题、执行行动等)的机器(硬件和软件)实现的学科。

 人工智能一词“正式”起源于美国数学家约翰麦卡锡(1956 年),并与他一起“推出”了第一批专门针对 AI 的编程语言(1958 年的 Lisp 和 1973 年的 Prolog)。从那时起,人工智能的历史一直在波动,其特点是在数学模型方面取得了重大进展(越来越复杂,旨在“模仿”一些大脑功能,如模式识别),但在研究方面却有起有落。硬件和神经网络。

什么叫做人工智能

人工智能的理解可以分为两部分,即“人工”和“智能”。是研究使计算机来模拟人的某些思维过程和智能行为的学科,主要包括【计算机】实现智能的原理、制造类似于人脑智能的计算机,使计算机能实现更高层次的应用。人工智能将涉及到计算机科学、心理学、哲学和语言学等学科。可以说几乎是自然科学和社会科学的所有学科,其范围已远远超出了计算机科学的范畴,人工智能与思维科学的关系是实践和理论的关系,人工智能是处于思维科学的技术应用层次,是它的一个应用分支。

人工智能能拥有的不是人的智能,而是和人类非常相似的一种能力,这种能力随着发展甚至会有可能超过人类的智能。

人工智能的研究是非常复杂的,如果想要从事这项研究的话,那必须要对计算机知识,心理学和哲学等有了解。人工智能因其是个比较广泛的科学的特性,而由多种领域组成,像机器学习、计算机视觉等等,其实,总结下来就是,人工智能主要研究就是让机器可以像人一样的工作,代替人类做些比较复杂的事情。

人工智能发展以来主要的使用范围是机器翻译,智能控制,专家系统,机器人学,语言和图像理解,遗传编程机器人工厂,自动程序设计,航天应用,庞大的信息处理,储存与管理,执行化合生命体无法执行的或复杂或规模庞大的任务等等。

什么叫人工智能

人工智能是需要人力、脑力、开发、高等技术与不断的研究和尝试等等一系列超高难度的作业才能完成的科技产品。当然这种研究是得到国家和人们大力支持的发展。它的发展对国际影响力是非常大的。人工智能也可以定义为高仿人类,虽然不可能会像人一样具有灵敏的反应和思考能力,但人工智能是按照人类的思想结构等等的探索而开发的研究。

人工智能的开发最主要的目的就是为了替人类做复杂、有危险难度、重复枯燥等的工作,所以人工智能是以人类的结构来设计开发的,人工智能在得到较好的开发后国家也是全力给予支持。人工智能的开发主要也是为了帮助和便利人类的生活。所以人工智能的定义一直以来都是以“协助人类”而存在的。人工智能概念的火热促进了不少行业的兴起,比如域名,许多相关的.top域名已经被注册。

以后可能在很多传统行业,比如银行,会有人工智能帮你得到更好的收益。信用卡或其他的贷款会由人工智能来决定哪些人士可以安全地放贷,而且会还钱。然后再往下人工智能可以开始动了,就可以进入工业机器人、商业机器人,终进入家庭机器人。

强人工智能与通用人工智能有什么本质区别

这篇论文中对这一问题有着直接的回答:

由于并未说清相似(或相同)的方面及程度,导致人工智能相关讨论的前提各异。近期,存在如下三种理解:第一种,认为人工智能包括计算智能、感知智能和认知智能三种(钟义信,2012);第二种,认为人工智能分为弱人工智能和强人工智能两种(曾毅,刘成林等,2016),而强人工智能也正是通用人工智能;第三种,认为人工智能分为专用人工智能和通用人工智能两种(刘凯,胡祥恩,王培,2018)。

第一种分类常见于行业演讲和报告中,既缺乏理论依据,又具有误导性:逻辑上貌似完整无缺,又与“奇点”不谋而合。其中,计算智能(又称运算智能)指的是快速计算和记忆存储能力,感知智能指的是视觉、听觉、触觉等感知能力,认知智能则指抽象理解的能力。对于计算系统而言,计算智能对应于计算水平,感知智能对应于感知水平,而认知智能则对应于认知水平,三者由低至高逐级更加“智能”。现在计算智能和感知智能业已成熟,那么随着技术的发展,在给定这一框架的前提下,认知智能也应该可以实现,毕竟前两者已经做到了。然而,无关乎最后的认知智能是否最终必然实现,关键问题在于框架的前提就有问题。事实上,计算能力和感知能力只是实现智能的必要条件,而不是智能本身,所以将计算智能和感知智能也划入智能的分解只是一个玩弄逻辑概念的把戏而已,在不能够真正地解决任何实质性问题的同时却极大提升了“认知智能必定能够实现”的信念和预期。因此,如果不能详实检视这个前提,那么所得到的后续结论便经不起推敲。

第二种分类多见于哲学论述中,最早由赛尔提出(Searle J,1980)。他认为,弱人工智能的计算机其价值主要是为心智探索提供有效的工具,而强人工智能则意味着某种程序化系统的运行本身就处于心智状态中,能够真正理解事物并具有自己的认知状态(唐热风,1998)。对此,徐英瑾专门撰文写道:大众理解的“强—弱”之分在于智能的宽与窄之分,而塞尔心中“强—弱”之分却是真假之分。然而,这种区分并不是没有意义的,起码说明了“人工智能在各个领域内的量的积累,未必会导致真正意义上的智能的涌现”(徐英瑾,2018)。于是,在赛尔看来即使一个计算机系统的外在表现完全像人,那也只是个“弱人工智能”,而“强人工智能”必须真正拥有自我意识。这是很多通用人工智能研究者不认可的,因为在此分类下人工智能系统的“强弱”之别就没有任何外部标准来衡量了(王培,2016)。可以看出,“强人工智能”并不是智力能够全面接近乃至超越人类智能的机器智能,而“弱人工智能”也不是指对人类智能的某些方面的模仿。所以,从原始学科向其他学科的概念“转移”中,其内涵和外延已经发生了变化,正如“奇点”一样。

第三种分类则出自人工智能技术领域自身,即认为人工智能包括专用人工智能(Special-purpose AI,SAI)和通用人工智能(Artificial General Intelligence,AGI)两个不同的子领域。对于“智能”理解的根本差异,使人工智能分化成为专用和通用两个不同分支。专用人工智能采取先做后思的路径,即一开始并不深究智能也不对智能做清晰的定义,而是通过技术迭代渐进式地提升智能化的程度。通用人工智能认为智能的存在代表着可以被认知的理性原则,采取的是先思后做的路径(刘凯,胡祥恩等,2018)。与人工智能早期工作时所使用“AI”非常相似,“AGI”的表述在2005前后被核心研究群体认可和采用,希望将他们的目标与当前“AI”(即SAI)区分开来。随后,AGI学会的年会及其学报于2008年及2009年相继启动。由于AGI项目的做法往往与主流AI社区有重大差别,所以尽管近年来“AGI”一词大热,但相关研究成果却基本鲜为人知。

因此,上述三种分类既有关联,又彼此不同,且三者不能简单等同:“计算智能+感知智能”既不能简单等同于“弱人工智能”,也不能简单等同于“专用人工智能”。同样地,“认知智能”既不能简单等同于“强人工智能”(强调“真正”智能的有无),也不能简单等同于“通用人工智能”(强调“真正”智能本身的特征)。事实上,也只有第三种分类适用于当前语境下的学术讨论,因此本文也将以第三种分类──“专用人工智能”和“通用人工智能”为讨论前提。

参考文献:

刘凯,隆舟,刘备备,王伟军,王培. 何去何从? 通用人工智能视域下未来的教师与教师的未来[J]. 武汉科技大学学报, 2018, 20(5):565-575.

结语:以上就是首席CTO笔记为大家介绍的关于什么叫专用人工智能的全部内容了,希望对大家有所帮助,如果你还想了解更多这方面的信息,记得收藏关注本站。


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如若转载,请注明出处:/AI/20185.html