导读:今天首席CTO笔记来给各位分享关于怎么样才能做到人工智能的相关内容,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!
实现人工智能的三要素
数据——人工智能的粮食
实现人工智能的首要因素是数据,数据是一切智慧物体的学习资源,没有了数据,任何智慧体都很难学习到知识。自从有记录以来,人类 社会 发展了数千年,在这期间,人类 社会 不断发展变化,从最早的原始 社会 到奴隶 社会 ,再到封建 社会 、资本主义 社会 、 社会 主义 社会 ,未来还会发展到共产主义 社会 ,在这漫长的发展过程中,都少不了数据做为人类 社会 发展的动力。
人类 社会 之所以发展的越来越高级文明,离不开学习知识,而知识的传播流传越快,则 社会 发展也越快,在封建 社会 以前,知识的传播从口口相传到甲骨文,再到竹简记录,就算是封建 社会 后期的纸质记录,其知识的传播速度也无法和今天的互联网知识的传播速度相提并论。
一般来说,知识的获取来自两种途径,一种是通过他人的经验而获得的知识,也就是他人将知识整理成册,然后供大家学习,这也是目前的主流学习方式;另一种就是通过自己的 探索 而获得的知识,这种学习方式目前只存在高精尖领域的知识学习,由于在已有的开放 社会 资源中,找不到可以学习的知识,只有自我 探索 获取。
无论哪种学习方式,都要通过学习载体来传播知识,无论是面对面讲述,实践操作,还是书本记录,或是电子刊物,亦或者影像资料等,这些都是学习载体,我们都可以称其为数据,学习数据的质量从根本上影响了学习的效果,所以对于人类学习而言,找一个好的老师,有一本好的书籍都是非常重要的学习选择。
既然人类的学习非常依赖于数据的质量,那么AI学习知识的时候,是否也会存在同样的问题呢?答案当然是肯定的,不仅如此,而且AI学习知识的时候对于数据的依赖还要高于人类。人类相比目前的AI而言,是具有推理能力的,在学习某些具有关联性知识的时候,通过推理联想可以获得更多的知识。从另一角度来讲,在某种特定场景下,即使数据不够完整全面,对于人类的学习影响也不会太大,因为人类会利用推理和想象来完成缺失的知识。而目前AI的推理能力还处于初级研究阶段,更多的难题还等着业内技术人员来攻克。
由此可见,目前AI学习知识大部分基本都是依赖于数据的质量的,在这种情况下,连人工智能专家吴恩达都发出人工智能=80%数据+20%算法模型的感慨,可见人工智能的“粮食安全”问题还是非常紧迫的,如果“粮食”出现了质量安全问题,那么最终将会导致人工智能“生病”。可见数据的好坏基本上大概率的决定了智能化的高低,有人会说,我可以通过提高算法模型来提高效果啊,不幸的是,在数据上稍微不注意造成了质量问题,需要在算法上历尽千辛万苦来提高效果,而且还不一定弥补得上,数据对于人工智能最终的发展结构可见一斑。
算力——人工智能的身体
算力是实现人工智能的另一个重要因素,算力在一定程度上体现了人工智能的速度和效率。一般来说算力越大,则实现更高级人工智能的可能性也更大。算力是依附于设备上的,所以一般谈论算力,都是在说具体的设备,比如CPU、GPU、DPU、TPU、NPU、BPU等,都是属于算力设备,只是他们有各自不同的能力而已。具体介绍可以阅读 《CPU、GPU、DPU、TPU、NPU...傻傻分不清楚?实力扫盲——安排!》 一文,介绍相当全面,从APU到ZPU,各种PU全部介绍完了,扫盲是够了。
算力设备除了上面的各种PU之外,每一种设备下面还会分不同的系列,比如英伟达的GPU在PC端有消费级的GeForce系列,专业制图的 Quadro 系列、专业计算的 Tesla系列 等,而GeForce系列细分还可以分为GT、GTX、RTX等,当然每种子系列下还可以继续细分,比如GTX下面有GTX1050、GTX1050Ti......GTX1080、GTX1080Ti,还有GTX Titan等更强大的系列,RTX下面也一样包括了更详细的等级划分,具体选择哪个系列要看具体使用场景而定,当然还和自身的消费实力相关,算力性能越强大也意味着更多的真金白银。
下面是RTX20系列的各种显卡的性能对比:
RTX30系列的各种显卡的对比:
此外,英伟达还有嵌入式端的各种显卡系列,比如适用于自主机器AI平台的JetSon系列、DRIVE AGX系列、Clara AGX系列等,以及云端的一些计算资源。同样每种系列还是做了进一步的细分,比如Jetson下面就根据其算力核心数就分成了Jetson Nano、Jetson TX2、Jetson Xavier NX、Jetson AGX Xavier等四款设备。
对于厂家而言,产品分的越细,越利于宣传和推广,对于消费者而言,可选择性也大大增加,但是也对消费者的基本知识也有了要求,如果不清楚各种产品的差异,那么就很容易选择错误,而现在的显卡市场就是如此,需要一些专业的知识才能够选对自己所需的显卡类型。希望大家经过科普后都能够选对自己的显卡型号,是打 游戏 、制图、还是计算,心里要有一个对应的系列型号才行,不然可要陷入选择困难症中了。
以目前人工智能主流技术深度学习为例,它的学习过程就是将需要学习的数据放在在算力设备上运行,经过神经网络亿万次的计算和调整,得到一个最优解的过程。如果把数据当成人工智能的“粮食”,那么算力就是撑起人工智能的“身体”,所有的吃进去的“粮食”都需要“身体”来消化,提取“营养”帮助成长。同样,人工智能的数据也是需要经过算力来逐一运算,从而提取数据的特征来作为智能化程度的标志的。
算法——人工智能的大脑
算法是人工智能程序与非人工智能程序的核心区别,可以这么理解,就算有了数据、有了算力,但是如果没有核心算力,也只能算是一个看起来比较高大上的资源库而已,由于没有算法的设计,相当于把一大堆的资源堆积了起来,而没有有效的应用。而算法就是使得这对资源有效利用的思想和灵魂。
算法和前两者比起来,算法更加的依赖于个人的思想,在同一家公司里,公司可以给每个算法工程师配备同样的数据资料和算力资源,但是无法要求每个算法工程师设计出来的算法程序的一致性。而算法程序的不一致性,也导致了最终智能化的程度千差万别。
相对于数据是依赖于大众的贡献,算力是依赖于机构组织的能力,而算法更加的依赖于个人,虽然很多公司是算法团队,但是真正提出核算算法思想的也就是那么一两个人,毫不夸张的说其他人都是帮助搬砖的,只是这种算法层面的搬砖相对纯软件工程的搬砖,技能要求要更高而已。这点和建筑设计一样,很多著名的建筑设计,其思想都是来自于一个人或者两个人,很少见到一个著名的设计其思想是由七八个人想出来的。
由于算法设计的独特性,和数据与算力相比,在人工智能的三个要素中,算法对人工智能的影响更大,这是因为在平时的工作当中,只要大家花上时间和费用,基本都可以找到好一些的数据和算力设备,但是算法由于其独特性,很多的算法是有专利或者没有向外界开源的,这个时候的差异就要在算法上体现出来了。
现在的大学和培训机构的人工智能专业,其学习方向也主要是以算法为主。因为数据是由大众产生,又由一些互联网大厂存储的,一般个人很少会去做这一块;而算力设备是由芯片公司控制着的;做为独立的个人最能够发挥效力的就在人工智能的算法方向了。培养优秀的算法人才对于人工智能的发展至关重要。目前市场上关于图像视觉、语音信号、自然语言、自动化等方向的算法工程师供不应求,薪资水平也是远超其他互联网软件行业的岗位。
后记:
当前,国内人工智能发展正处于高速成长期,未来将会进入爆发期,无论从业者是处于人工智能的数据处理方向,还是人工智能的算力设备研发方向,或者是人工智能的算法研发方向,都将会迎来巨大的行业红利和丰厚的回报。而人工智能算法方向又是学习回报比最高的一个方向,做为没有背景的个人,是进入人工智能行业的最佳选择 。
文/deep man
人工智能需要什么基础?
首先你需要数学基础:
高等数学,线性代数,概率论数理统计和随机过程,离散数学,数值分析
其次需要算法的积累:人工神经网络,支持向量机,遗传算法等等算法;
当然还有各个领域需要的算法,比如你要让机器人自己在位置环境导航和建图就需要研究SLAM;总之算法很多需要时间的积累;
然后,需要掌握至少一门编程语言,毕竟算法的实现还是要编程的;如果深入到硬件的话,一些电类基础课必不可少;
人工智能一般要到研究生才会去学,本科也就是蜻蜓点水看看而已,毕竟需要的基础课过于庞大。
2人工智能专业课程
从课程体系结构来看,主要分成四大部分:
第一部分是基础学科部分,主要涉及到数学和物理相关课程;
第二部分是计算机基础课程,涉及到编程语言、操作系统、算法设计等课程;
第三部分是人工智能基础课程,涉及到人工智能基础、机器学习、控制学基础、神经科学、语言学基础等内容;
第四部分涉及到人工智能平台相关知识。
3人工智能就业情况
人工智能专业可从事的岗位有:分析类,分析工程师、算法工程师;研发类,架构工程师、开发工程师、运维工程师;管理类,产品经理、运营经理。
目前国内人工智能相关岗位的应届毕业生的起薪基本都在10k—20k之间,毕业三年后人工智能岗位的技术人员,平均月薪在25k以上,基本实现薪酬翻番,薪资水平、就业满意度都优于全国平均水平的专业。
人工智能怎么做?
工智能在计算机上实现时有2种不同的方式。一种是采用传统的编程技术,使系统呈现智能的效果,而不考虑所用方法是否与人或动物机体所用的方法相同。这种方法叫工程学方法,它已在一些领域内作出了成果,如文字识别、电脑下棋等。另一种是模拟法,它不仅要看效果,还要求实现方法也和人类或生物机体所用的方法相同或相类似。
怎样可以实现人工智能呢?
引言:科技越来越发达,就有一个新名词出现在人们的眼前,叫作人工智能。这个词呢就比较新鲜,那么什么是人工智能,人工智能又是怎么样实现的,又怎么才可以实现人工智能,今天小编就给大家来分析一下。
一、关于人工智能
人工智能的理解可以分为两个意思,可以将这个词分开来理解,就是人工和智能两个意思。人工智能呢就是通过用计算机来模仿人的一些思维过程,然后和一些智能行为。就通过模拟这些来实现智能工作的原理,然后制作和人想法相似的智能的机器。就可以实现更高层次的应用,这些只是它的一个应用分支。那它也是一门新的技术科学,它的理论方法和技术都是全新的。人们就可以通过它来实现一些自己达不到的技术。
二、要怎样才能实现
公共职能的实现主要就有两种方式的,一个就是采用最传统的方式进行编码设计。编码设计呢,就是通过一些技术就让系统呈现出比较智能的效果,然后它不考虑用的方法是不是和人或动物所用的方法一样。这种方法就相当于是一些文字识别和电脑会下棋是一样的,这只是其中的一种方法。
那第二种方法的话就会相对于来说较难一点,因为它不光光要看之后呈现的效果,还要要求实现它的方法和人类所相似。这种方法呢,就是模拟人的想法的一种方式。通过用电脑和人的想法相结合,然后达到相同的智能效果。像网络游戏一样,如果游戏简单的话就会比较简单。如果是游戏复杂的话,就会对角色的数量和活动空间增加的量,就会对它也增加了一些难度。要想实现人工智能的话,就可以通过这两种方式来进行实现。
结语:以上就是首席CTO笔记为大家整理的关于怎么样才能做到人工智能的全部内容了,感谢您花时间阅读本站内容,希望对您有所帮助,更多关于怎么样才能做到人工智能的相关内容别忘了在本站进行查找喔。