首页>>人工智能->工程人员如何学习人工智能(2023年最新解答)

工程人员如何学习人工智能(2023年最新解答)

时间:2023-12-12 本站 点击:0

导读:很多朋友问到关于工程人员如何学习人工智能的相关问题,本文首席CTO笔记就来为大家做个详细解答,供大家参考,希望对大家有所帮助!一起来看看吧!

优秀的人工智能工程师要掌握哪些知识?

1.杰出的数学和统计学基础。人工智能工程师所面临的问题千变万化,无论是在抽象建模还是模型算法分析设计阶段,都需求以数学和统计学才能作为基础。并且人工智能最重要的领域--机器学习又是计算机科学中对数学和统计学要求最高的分支之一,所以一名优异的人工智能工程师首先必须有出色的数学和统计学才能。

2.编程言语。人工智能需求有种编程言语的才能,如 Python、C++、Java等。人工智能是一门综合性很强的学科,需求各个领域的算法作为支撑,而算法是需求编程来实现的。

3.人工神经网络。人工智能包含“人工”和“智能”两个方面。虽然说现在有许多底子不懂人工神经网络的人也在从事 人工智能工作,但从人工智能的本质以及全体的开展来说,人工神经网络将是人工智能产品的核心技术。

关于优秀的人工智能工程师要掌握哪些知识,青藤小编就和您分享到这里了。如果你对大数据工程有浓厚的兴趣,希望这篇文章能够对你有所帮助。如果您还想了解更多数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。

人工智能专业的学习步骤?

这个可以到专业学习院校了解

人工智能

就业方向:科学研究,工程开发。计算机方向。软件工程。应用数学。电气自动化。通信。机械制造

人工智能可以说是一门高尖端学科,属于社会科学和自然科学的交叉,涉及了数学、心理学、神经生理学、信息论、计算机科学、哲学和认知科学、不定性论以及控制论。研究范畴包括自然语言处理、机器学习、神经网络、模式识别、智能搜索等。应用领域包括机器翻译、语言和图像理解、自动程序设计、专家系统等。

如何自学人工智能

学习AI的大致步骤:

(1)了解人工智能的一些背景知识;

(2)补充数学或编程知识;

(3)熟悉机器学习工具库;

(4)系统的学习AI知识;

(5)动手去做一些AI应用;

1 了解人工智能的背景知识

人工智能里面的概念很多,比如机器学习、深度学习、神经网络等等,使得初学者觉得人工智能很神秘,难以理解。刚开始学习的时候,知道这些名词大致的意思就行了,不用太深究,学习过一段时间,自然也就清楚这些概念具体代表什么了。

人工智能是交叉学科,其中数学和计算机编程是学习人工智能最重要的两个方面。这些在“知云AI专栏”之前的文章“认识人工智能”,也为大家介绍过,没阅读过的同学可以去看一下。

下图为人工智能学习的一般路线:

2补充数学或编程知识

对于已经毕业的工程师来说,在系统学习AI之前,一般要补充一些数学或者编程方面的知识。如果你的数学和编程比较好,那么学习人工智能会轻松很多。

很多同学一提到数学就害怕,不过,学习人工智能,数学可以说是绕不过去的。在入门的阶段并不需要太高深的数学,主要是高等数学、线性代数和概率论,也就是说,大一大二学的数学知识已经是完全够用了。如果想要从事机器学习工程师的工作,或者搞人工智能的研究,那么应该多去学习数学知识,数学好将会是工作中的一大优势。

Python是在机器学习领域非常受欢迎,可以说是使用最多的一门编程语言,因此Python编程也是需要掌握的。在众多的编程语言中,Python是比较容易学习和使用的编程语言,学好Python也会受益很多。

3 熟悉机器学习工具库

现在人们实现人工智能,主要是基于一些机器学习的工具库的,比如TensorFlow、PyTorch等等。

在这里推荐大家学习PyTorch。PyTorch非常的受欢迎,是容易使用的机器学习工具库,有人这样评价PyTorch“也说不出来怎么好,但是使用起来就是很舒服”。

刚开始学习人工智能的时候,可以先运行一下工具库官网的示例,比如MNIST手写体识别等。这样会对人工智能有一个感性的认识,消除最初的陌生感。然后可以看看里面的代码,你会发现,其实神经网络的程序并不复杂,但是会对神经网络的原理和训练有很多的疑问。这是一件好事,因为带着问题去学习,会更有成效。

4 系统的学习人工智能

这里的人工智能主要指机器学习,因为目前人工智能主要是通过机器学习的方式来实现的。

机器学习知识主要有三大块:

(1)传统机器学习算法,比如决策树、随机森林、SVM等,这些称作是传统机器学习算法,是相对于深度学习而言的。

(2)深度学习,指的就是深度神经网络,可以说是目前最重要最核心的人工智能知识。

(3)强化学习,源于控制论,有时候也翻译成增强学习。深度学习可以和强化学习相结合使用,形成深度强化学习。

在这里需要知道的是深度学习并不难学,对于一些工科的研究生,一般只需要几周就可以上手,并可以训练一些实际应用中的神经网络。但是想要对深入学习有深入理解不是容易的事情,一般需要几个月的时间。

传统机器学习算法的种类非常多,有些算法会有非常多的数学公式,比如SVM等。这些算法并不好学,因此可以先学习深度学习,然后再慢慢的补充这些传统算法。

强化学习是比较有难度的,一般需要持续学习两三个月,才能有所领悟。

5 动手去做一些AI应用

学习过几周的深度学习之后,就可以动手尝试去做一些AI应用了,比如图像识别,风格迁移,文本诗词生成等等。边实践边学习效果会好很多,也会逐渐的加深对神经网络的理解。

大数据工程师如何进阶人工智能?

数学基础

机器学习有时候也被称为统计学习,其实就是统计大量历史数据中的规律,构建算法模型,再利用模型对现在的数据进行分类和预测。所以学习机器学习算法,先要复习一下统计学和概率论方面的知识。

机器学习算法

系统学习机器学习算法最好的入门级课程是斯坦福大学的机器学习公开课,这门课程由吴恩达讲授,非常经典。还有几本比较经典的书籍可以和公开课相互参照,比如周志华的《机器学习》,俗称“西瓜书”,比较通俗易懂,适合入门;李航的《统计学习方法》,偏数学一些,可以不时翻看。

大数据技术与机器学习框架

在小规模的数据集上做算法练习,用Python程序在单机上运行就可以了,但是在真正的生产环境中,需要面对海量的数据处理计算需求,这就需要用到各种大数据技术产品。各种主流大数据产品都有自己的机器学习框架与算法库,比如Hadoop上有Mahout、Spark上有MLlib,借助这些算法库和工具,可以较快速地在大数据平台上开发机器学习应用程序。

人工智能应用

人工智能距离达到“实用”的地步还有一段距离,大家如果留意会发现关于人工智能类的产品新闻等都是说几年内会取得成就、进行投入等,在现实当中,有投入的人工智能产品么?当然有,不过都是一些弱人工智能,其智能程度并不高。业界其实不缺懂算法的专家,但是却非常短缺能够将机器学习和业务结合,产生实际价值的专家。

关于大数据工程师如何进阶人工智能,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。

以上是小编为大家分享的关于大数据工程师如何进阶人工智能?的相关内容,更多信息可以关注环球青藤分享更多干货

人工智能工程师需要具备哪些知识?

1.良好的数学和统计学基础。人工智能工程师所面对的问题千变万化,无论是在抽象建模还是模型算法分析设计阶段,都需要以数学和统计学能力作为基础。而且人工智能最重要的领域--机器学习又是计算机科学中对数学和统计学要求最高的分支之一,所以一名优秀的人工智能工程师首先必须有出色的数学和统计学能力。

2.编程语言。人工智能需要有种编程语言的能力,如 Python、C++、Java等。人工智能是一门综合性很强的学科,需要各个领域的算法作为支撑,而算法是需要编程来实现的。

3.人工神经网络。人工智能包括“人工”和“智能”两个方面。虽然说目前有很多根本不懂人工神经网络的人也在从事 人工智能行业,但从人工智能的本质以及整体的发展来说,人工神经网络将是人工智能产品的核心技术。

关于人工智能工程师需要具备哪些知识,青藤小编就和您分享到这里了。如果你对大数据工程有浓厚的兴趣,希望这篇文章能够对你有所帮助。如果您还想了解更多数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。

结语:以上就是首席CTO笔记为大家整理的关于工程人员如何学习人工智能的相关内容解答汇总了,希望对您有所帮助!如果解决了您的问题欢迎分享给更多关注此问题的朋友喔~


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如若转载,请注明出处:/AI/27095.html