导读:今天首席CTO笔记来给各位分享关于人工智能如何与医学结合的相关内容,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!
本文目录一览:
1、既能检索病例还可帮助诊断,看人工智能如何助力医疗升级2、人工智能给生活带来巨大便利,“AI助手”是如何辅助医生工作的呢?3、人工智能在医学领域的应用包括4、AI医疗技术有哪些重要应用?既能检索病例还可帮助诊断,看人工智能如何助力医疗升级
你知道吗?眼底医学检查是窥见高血压、糖尿病、冠心病、帕金森症等重大慢病信号的重要窗口,但是很多患者因定期复查的时间、财务成本和距离的阻隔而错过了控制病变的机会。
在9月18日,首台国产“黑 科技 ”眼底影像仪问世。这个集合了AI辅助诊断系统、华为云人工智能和连接技术以及协和医院顶尖临床实力的眼底影像仪,实现超弱光照量环境下的精准诊疗,简单、快速、无损地还原图像的真实纹理,为眼科医生提供更有利于精准诊断的信息,降低了漏诊、误诊的发生率!
什么是人工智能?
人工智能是研究人类智能活动的规律,构造具有一定智能的人工系统,研究如何让计算机去完成以往需要人的智力才能胜任的工作,也就是研究如何应用计算机的软硬件来模拟人类某些智能行为的基本理论、方法和技术。
人工智能在医院里的应用
1、医用虚拟助理
医用虚拟助理是一种基于人工智能技术和医疗知识体系,将患者症状表现与诊疗标准对比,为患者提供全流程服务的专用型信息系统,使用者可以通过语言文字、图像等形式与AI系统进行互动,使其提供医疗咨询等服务。
目前医用虚拟助理可用于疾病诊疗的前、中、后多个环节,如诊疗前的智能导诊机器人能对患者讲话内容进行语义分析经后台数据处理并给出分诊和导诊建议,或通过传感器获取患者生命体征信息并反馈给医生来提高问诊效率。
2、医学影像识别
AI 与 X 射线、超声、CT和MRI等医学影像结合能提高医师诊断效率,辅助治疗与判断。AI在医学影像领域的应用主要是图像分割、分类、配准、识别和深度学习系统等,即通过分析影像获取有意义的信息,进行大量的影像数据对比,进行算法训练,逐步掌握诊断能力。医学影像领域已成为AI与大数据在医疗领域应用发展最快的方向之一。
3、病理诊断
AI在标注病理结构等肿瘤特征时能够识别到人眼无法观察到的细节并作定量描述,可避免医师主观性带来的差异。AI深度学习技术在病理学领域展现出极大的应用前景,它可以帮助病理医师提高诊断效率和准确性,减轻工作负担,缓解病理医师缺乏以及不同地区医师诊断水平差距明显的难题,为患者提供更加精准、可靠的高质量医疗服务。
4、辅助诊疗
辅助诊疗是指将AI技术用于疾病诊疗中,让计算机从医学书籍、文献、指南和案例等深度学习医学知识并归纳,建立知识库,模拟医师的思维和诊断推理过程,对患者的病症信息等医疗大数据进行智能匹配,通过已学习的知识推理判断疾病原因与发展趋势,给出初步的诊断和治疗方案,医师参考辅助诊疗结果并结合临床经验提供更多的临床决策指导,使诊疗流程更加客观、科学、合理、高效。
5、医学数据平台
基于AI与互联网技术的医学数据平台可以分为两类:一是医学研究大数据平台,通过对医学文献中的海量医疗大数据进行分析,能够有效促进医学研究;二是医学评价数据平台,通过平台获取医疗机构内包括病案首页以及大型医用设备和临床重点药物相关的医疗活动中重要的数据点,让大数据进行分析和数据模型推演,从而提高医疗机构相关工作整体管理水平。
6、疫情诊治与监测
AI 借助大数据技术可以通过影像识别、自动体温检测和病毒溯源等辅助新冠肺炎诊治并进行疫情监测预警,开发适宜的预警关键技术,基于人工智能的疫情监控云平台监测预警、疫情地图、确诊及密切接触人员轨迹追踪、人群流动监测等在减少人力成本、降低感染风险的同时显著提升抗疫效率。
人工智能技术广泛的应用前景,将给老百姓看病带来许许多多、实实在在的便利。手术机器人、远程手术等应用场景,还将让更多百姓享受到优质的医疗资源。
专家:中国传媒大学信号与信息处理专业副教授余心乐
人工智能给生活带来巨大便利,“AI助手”是如何辅助医生工作的呢?
近年来,人工能的应用场景越来越广泛,医疗助理帮助医生进行远程会诊,智能耳朵给听障人士带来了沟通的便利,电子管家在医疗、教育、保健等领域实时关爱独居老人,人工智能提供的细致服务让科技更加温暖。它是临床医生分析数据、提供初步诊断的助手;它是听障人士的耳朵,把声音变成文字,方便交流;它是独居老人的管家,保障老人的安全。
随着人工智能的迅速发展,其应用场景越来越广泛,不仅带来了更多的便利,而且提供了更加贴心、温馨的服务。在医院里,临床医生有人工智能助理上海交通大学医学院附属瑞金医院放射科医师陈奇华在谈到人工智能时说,对我来说,人工智能是一个可靠的助手。在AI技术的帮助下,我一个上午就可以完成20多个病人的影像诊断,相当于前一天的诊断量,诊疗效率得到了明显提高。
前不久,中日友好医院呼吸科主任医师戴华平与AI助理合作完成了远程会诊。戴华平在北京国家远程医疗和互联网医疗中心,李泽元在哈尔滨医科大学第二附属医院。老李因发热、咳嗽、咳痰、呼吸困难住院。医院将他的胸部CT图像数据上传到远程诊疗中心平台。平台预置的肺部疾病AI辅助诊断系统对老李胸部异常征象进行检测,对肺部炎症、肺结节影等可疑病变进行定位、定量和定性分析。在AI助理的帮助下,戴华平结合相关临床症状和当地医生的诊断结果,确定了老李的治疗方案。
为临床辅助图像分析和专家咨询这一任务提供必要的依据。国家远程医疗和互联网医疗中心相关负责人表示,人工智能辅助诊断系统提高了相关病变的检测灵敏度,可以自动形成分析数据,帮助临床医生快速做出临床判断。在上海交通大学医学院附属瑞金医院放射科主任颜福华看来,人工智能助理有着明显的优势,放射科医生每天需要阅读和分析大量的图像,人们的工作效率会因为疲劳而降低,而人工智能则不会。它甚至可以比人眼更快地在图像中发现可疑病变,有助于做出初步诊断,根据中国医用材料协会发布的《2019年医学人工智能发展报告》,人工智能技术的应用可以有效提高医学数据处理效率,降低医疗成本。
人工智能在医学领域的应用包括
目前,人工智能在医疗领域的应用将主要集中在这几方面。诊断疾病、个体化用药、药物开发、临床试验、放射治疗和放射学、电子健康记录。
1、诊断疾病:医学面临的最大挑战是疾病的正确诊断和识别,这也是机器学习发展的重中之重。2015年的一份报告显示,针对超800种癌症的治疗方案正在临床试验中。而利用机器学习可使癌症识别更加精确。
2、个体化用药:关于使用机器学习和预测分析来定制针对个人的特异性治疗潜能,目前正处于研究中。如果成功,这一策略可以优化诊断和治疗方案。
目前,研究的重点是有监督的学习,医生可以利用遗传信息和症状缩小诊断范围,或对患者的风险做出有根据的推测。这可以促进更好的预防措施。
3、药物开发:机器学习在早期药物发现(如新药开发)和研发技术(如下一代测序)中发挥着许多作用。这一领域的第一项是精确医学,它使复杂疾病的识别和可能的治疗方式更有效。MIT临床机器学习小组是使用机器学习促成精密医学的主要参与者之一,侧重于算法开发。
4、临床试验:临床试验研究是一个漫长而艰巨的过程。机器学习可以在各种方面帮助缩短这一过程。一种策略是通过对广泛的数据使用高级预测分析,从而更快地确定目标人群的临床试验候选人。
麦肯锡( McKinsey )的分析师描述了其他机器学习应用程序,这些应用程序可以通过简化计算理想样本大小、方便患者招募以及使用病历将数据错误降至最低等任务来提高临床试验的效率。
5、放射治疗和放射学:哈佛医学院助理教授Ziad Obermeyer博士在2016年的一次采访中表示:“20年后,放射学家将不会以现在的形式存在。它们看起来更像是电子机器人:监督每分钟阅读数千份研究报告的算法。
目前,伦敦大学学院医院的deep mind Health正在开发机器学习算法,通过区分健康组织和癌症组织来提高放射治疗计划的准确性。
6、电子健康记录:支持向量机(Support vector machines用于分类患者电子邮件查询的技术)和光学字符识别(用于数字化手写笔记的技术)是用于文档分类的机器学习系统的基本组件。
这些技术的应用案例包括MathWorks的MATLAB (一个具有手写识别应用程序的机器学习工具)和谷歌的云视觉API。
MIT临床机器学习小组的重点之一是开发基于机器学习的智能电子健康记录技术,其理念是开发“安全、可解释、能从少量标记的训练数据中学习、理解自然语言、并能在医疗环境和机构中很好地推广的强大机器学习算法”。
AI医疗技术有哪些重要应用?
医疗领域是人工智能一个重要的应用方向,与互联网不同,人工智能对医疗领域的改造是颠覆性的,过去五年是人工智能医疗发展的加速期,人工智能对于医疗健康领域中的应用已经非常广泛。人工智能在医疗方面的应用场景主要有哪些呢?
1、智能药物研发
智能药物研发是指将人工智能中的深度学习技术应用于药物研究,通过大数据分析等技术手段快速、准确地挖掘和筛选出合适的化合物或生物,达到缩短新药研发周期、降低新药研发成本、提高新药研发成功率的目的。
新药研发是一个时间长、耗费大、风险大的漫长过程。塔夫茨大学药品研发研究中心通过既往获批的药物数据发现,研发一个新药至少需要10年、26亿美元的巨大投入。而人工智能技术在新药研发中可以发挥非常重要的作用。
2、智能诊疗
智能诊疗就是将人工智能应用到医学诊疗中,让机器“学习”专家级医师的医疗经验和医学文献知识,模拟诊疗时的思维逻辑,并在实际应用时给出方案。现在,智能诊疗的概念进一步扩大,一些诊疗时的准备工作也可由机器承担,进一步减轻医生的压力。
智能诊疗贯穿医生面诊的前中后整个流程,目前主流的开发方向包括:语音病历、辅助决策、风险预警等领域。比如智能语音病历,就是通过语音识别技术,帮助医生快速录入病历,德信数据显示,中国50%以上的住院医生平均每天有4小时以上在写病历,而应用语音病历后,医生的主诉内容可以实时地转换成文字,效率大大提升。
再比如辅助治疗决策,辅助治疗决策是很多科技公司目前重点研究的方向,通过先进算法,以临床指南知识库为基础,结合医生经验,对海量真实的临床诊疗数据和离院随访数据进行训练,能够挖掘治疗方案和结局的关联,对比不同治疗方案的效果。从而协助医生为患者提供更精准优质的诊疗方案。
3、医学影像智能识别
AI医学影像是指利用AI在感觉认知和深度学习的技术优势,将其应用在医学影像领域,实现机器对医学影像的分析判断,是协助医生完成诊断、治疗工作的一种辅助工具,帮助医生更快获取影像信息,进行定量分析,提升医生看图、读图的效率,协助发现隐藏病灶,从而达到提高诊断效率和准确率的目的。
人工智能在医学影像应用主要分为两部分:一是图像识别,应用于感知环节,其主要目的是将影像进行分析,获取一些有意义的信息;二是深度学习,应用于学习和分析环节,通过大量的影像数据和诊断数据,不断对神经元网络进行深度学习训练,促使其掌握诊断能力。
4、医疗机器人
医疗机器人是一种智能型服务机器人,它具有广泛的感觉系统、智能和精密执行机构,从事医疗或辅助医疗工作。医疗机器人的目的并不是代替手术医生,而是作为一种辅助工具来拓展医生的手术能力、提高手术质量、减轻医生的工作强度。
医疗机器人具有较为广泛的概念,包括外科手术机器人、康复机器人、医疗服务机器人和微型检测与治疗机器人等。外科手术机器人根据手术类型不同可分为显微外科手术机器人、神经外科手术机器人、耳鼻喉外壳手术机器人、整形外科与骨科手术机器人等。
5、智能健康管理
根据人工智能而建造的智能设备可以监测到人们的一些基本身体特征,如饮食、身体健康指数、睡眠等,对身体素质进行评估,提供个性的健康管理方案,及时识别疾病发生的风险,提醒用户注意自己的身体健康安全。目前人工智能在健康管理方面的应用主要在风险识别、虚拟护士、精神健康、在线问诊、健康干预以及基于精准医学的健康管理。
健康管理行业因其预防、调养的基调和个体化管理的特性,正在成为预防医学的主流。“十四五”期间我国进入高质量发展的新阶段,我国健康管理也将进入一个新的发展阶段。面临机遇和挑战,健康管理服务将向着更加广泛、深入和个性化转变,利用AI技术对健康管理进行智能升级的智能健康管理是目前适合我国国情的一种健康管理方式。
结语:以上就是首席CTO笔记为大家整理的关于人工智能如何与医学结合的全部内容了,感谢您花时间阅读本站内容,希望对您有所帮助,更多关于人工智能如何与医学结合的相关内容别忘了在本站进行查找喔。