导读:很多朋友问到关于人工智能用于哪些场景中的相关问题,本文首席CTO笔记就来为大家做个详细解答,供大家参考,希望对大家有所帮助!一起来看看吧!
本文目录一览:
1、人工智能在生活中的应用有哪些2、人工智能的应用领域有哪些方面3、人工智能有哪些应用场景?4、人工智能的应用领域有哪些?5、人工智能的应用领域包括哪些?6、人工智能应用领域有哪些?人工智能在生活中的应用有哪些
一、交通运输
1、物流
所有流动运输中的设备都通过智能标签发送定位信息、设备标识码、状态到物联网中,以便统一调度、指挥。
智能物流系统:是在智能交通系统和相关信息技术的基础上,以电子商务方式运作的现代物流服务体系。
智能物流系统:通过智能交通系统和相关信息技术解决物流作业的实时信息采集,并在一个集成的环境下,对采集的信息进行分析和处理。通过在各个物流环节中的信息传输,为物流服务提供商和客户提供详尽的信息和咨询服务的系统。智能物流系统包括:物流运输机器人(无人机、无人驾驶快递汽车)、物流导航、控制、调度。
2、城市交通
智能交通系统:是将先进的信息技术、通讯技术、传感技术、控制技术以及计算机技术等有效地集成运用于整个交通运输管理体系,而建立起的一种在大范围内、全方位发挥作用的,实时、准确、高效的综合的运输和管理系统。
智能交通系统的应用范围:包括机场、车站客流疏导系统,城市交通智能调度系统,高速公路智能调度系统,运营车辆调度管理系统,机动车自动控制系统等。
无人驾驶汽车:特斯拉。
3、智能停车场
智能车牌识别系统主要是由:摄像头、控制程序、嵌入式硬件和停车栏杆控制系统组成。
港珠澳大桥珠海口岸配套的停车场,采用人工智能识别、导航寻车系统。包括停车场+车牌识别/卡片系统、视频车位引导+反向寻车+线上打折及缴费系统等,三个区域停车场共计18个车道,约2500个车位。由智慧城市公司打造的智慧停车系统,整合了智能硬件、视频识别、车位引导、室内定位、云平台等技术,实现了便捷停车、线上缴费、车位引导、自助寻车、动态导航等功能。
4、快递。
智能快递分捡系统、智能快递柜。
二、安全系统
1、安防监控
智能门禁系统:用人脸识别、指纹识别开门。
人工智能的应用领域有哪些方面
人工智能的领域有:1、智能文本分类;2、智能语音;3、智能视频识别;4、智能服务机器人;5、人脸识别
一、智能文本分类
智能分类主要针对文本处理,应用于社会治理方面如城管、12345热线、网格事件、法院案件等存在大量案件,且案件类型较多样的场景,比如城管事件中有很多这样的分类。
二、智能语音应用
智能语音针对语音进行处理,应用方向主要为语音识别。
三、智能视频识别应用
智能视频识别针对视频进行处理,主要用于视频流的分析。
四、智能服务机器人
机器人应用目前还是比较多,商场、医院、交通枢纽有指引机器人,政务办事大厅有政务事项办理机器人,城市管理有智能清扫机器人、排污机器人,接待室里有讲解机器人等,机器人在城市的方方面面还是起到了一定的作用。
五、人脸识别
人脸识别技术其实不需要多说,现在是普及最广泛、群众接触最多的一项应用。各类移动应用都引入人脸识别以便实现身份的认证,比如扫脸支付、进站检票、证券开户。
人工智能有哪些应用场景?
人工智能不仅是题主所提到的基于自然语言的人机交互,比如人脸识别、人体姿态捕捉也是不错的人机交互方式,虽然没有语言看起来那样智能,但也能达到不少高效的交互结果。
——1、健康医疗方面
现今医院都会给每一位患者建立一份完整的电子医疗档案,让患者在就医过程中可以向医生提供一份完善清晰的检查报告,避免医生的重复性工作。
人们还可以通过人工智能进行身体健康管理,通过对健康状态进行全方位的监测,对身体健康实现全方位的管理。
通过人工智能技术对医疗影像的分析,帮助医生进行综合性的判断,增加确诊率。医疗机器人可以帮助医生提高手术精度,提高手术成功率。
——2、交通领域
人工智能分析及深度学习比较成熟的应用技术以车牌识别算法最为理想,虽然目前很多厂商都宣称自己的车牌识别率已经达到了99%。
目前车辆统计与识别是交通行业最为热门的应用,虽然现在的识别度不是很高,但是随着人工智能、深度学习的应用,这一情况将会得到很大的改善。
基于智能视频识别技术与大数据计算能力,可以实现除车流量统计、车辆识别,还可以根据提取出的车辆信息结合GIS或卫星定位技术,用来进行车辆的跟踪。
——3、信息安全方面
人工智能应用场景被广泛应用于网络安全运行管理、网络系统安全风险自评估、物联网安全问题等方面。
最主要的内容包括反垃圾邮件、防火墙和入侵检测3个部分,同时网络控制和网络监视则是网络管理系统过程中最重要的两个环节。结合人工智能在计算机网络中的这些优势,可以更好地管理计算机网络安全。
人工智能技术可以利用其强大的理解和推理能力快速分析并判断信息中是否存在异常。从而最大限度地避免对其他网络业务造成损失。
人工智能的应用领域有哪些?
人工智能主要应用领域包括:1、农业方面。2、通信方面。3、医疗方面。4、社会治安方面。5、交通领域方面。6、服务业方面。7、金融行业方面。
人工智能的应用领域包括哪些?
机器翻译,智能控制,专家系统,机器人学,语言和图像理解,遗传编程机器人工厂,自动程序设计,航天应用,庞大的信息处理,储存与管理,执行化合生命体无法执行的或复杂或规模庞大的任务等等。
值得一提的是,机器翻译是人工智能的重要分支和最先应用领域。不过就已有的机译成就来看,机译系统的译文质量离终极目标仍相差甚远;而机译质量是机译系统成败的关键。
中国数学家、语言学家周海中教授曾在论文《机器翻译五十年》中指出:要提高机译的质量,首先要解决的是语言本身问题而不是程序设计问题;单靠若干程序来做机译系统,肯定是无法提高机译质量的;
另外在人类尚未明了大脑是如何进行语言的模糊识别和逻辑判断的情况下,机译要想达到“信、达、雅”的程度是不可能的。智能家居之后,人工智能成为家电业的新风口。
影响
人工智能的长期经济影响尚不确定。一项针对经济学家的调查显示,对于越来越多地使用机器人和人工智能是否会导致长期失业率大幅上升存在分歧,但他们普遍认为,如果生产力收益重新分配,这可能是一项净收益。
普华永道2017 年的一项研究认为,到 2030 年,中华人民共和国在经济上从人工智能中获益最多,占 GDP 的26.1% 。
一份 2020 年 2 月的欧盟人工智能白皮书提倡人工智能以获取经济利益,包括“改善医疗保健(例如使诊断更精确,更好地预防疾病),提高农业效率,为减缓和适应气候变化做出贡献, 通过预测性维护提高生产系统的效率”,同时承认潜在风险。
以上内容参考 百度百科-人工智能
人工智能应用领域有哪些?
人工智能的主要应用领域有:1.强化学习领域;2.生成模型字段;3.内存网络领域;4.数据学习领域;5.模拟环境领域;6.医疗技术领域;7.教育领域;8.物流管理领域。
1.加强学习领域
强化学习是一种通过实验和错误进行学习的方法,它受到人类学习新技能过程的启发。在强化学习的典型案例中,我们要求参与者采取行动,通过观察当前情况来最大化反馈结果。每次你执行一个动作,实验者都会收到环境的反馈,所以它可以判断这个动作的效果是积极的还是消极的。
2.生成模型字段
通过大量样本的收集,人工智能生成的模型具有很强的相似性。也就是说,如果训练数据是人脸的图像,那么训练后得到的模型也是类似人脸的合成图像。
人工智能顶级专家Ian Goodfellow为我们提出了两个新思路:一个是生成器,负责将输入的数据合成新的内容;另一个是鉴别器,负责判断生成器生成的内容是真是假。这样,生成器必须反复学习合成的内容,直到鉴别器无法辨别生成器内容的真实性。
3.存储网络字段
人工智能系统要像人类一样适应各种环境,就必须不断掌握新的技能并学会应用。传统的神经网络很难满足这些要求。比如一个神经网络训练完A任务后,如果训练它去解决B任务,那么这个网络模型就不再适合A了。
目前有一些网络结构可以使模型具有不同程度的记忆能力。长短期记忆网络可以处理和预测时间序列;渐进神经网络学习独立模型之间的水平关系,提取共同特征,可以完成新的任务。
4.数据学习领域
一直以来,深度学习模式都是需要大量的训练数据才能达到最好的效果。没有大规模的训练数据,深度学习模型不会取得最好的效果。例如,当我们使用人工智能系统解决缺乏数据的任务时,会出现各种问题。有一种方法叫迁移学习,就是把训练好的模型转移到一个新的任务上,这样问题就很容易解决了。
5.仿真环境领域
如果人工智能系统要应用于现实生活,那么人工智能必须具有适用性的特点。因此,开发模拟真实物理世界和行为的数字环境,将为我们提供检验人工智能的机会。在这些仿真环境中进行训练,可以帮助我们很好地理解人工智能系统的学习原理以及如何改进系统,也为我们提供了一个可以应用到真实环境中的模型。
6.医疗技术领域
目前垂直领域的图像算法和自然语言处理技术基本能够满足医疗行业的需求,市场上已经出现了很多技术服务商,比如提供智能医学影像技术的尚德云星、开发人工智能细胞识别医疗诊断系统的智维信分公司、提供智能辅助诊断服务平台的若水医疗、统计处理医疗数据的一通天下等。虽然智能医疗在辅助诊疗、疾病预测、医学影像辅助诊断、药物开发等方面发挥着重要作用。由于医院之间缺乏医学影像数据和电子病历的流通,企业与医院之间的合作不透明,这就使得技术发展与数据供给之间产生矛盾。
7.教育领域
科大讯飞、学校教育等企业已经开始探索人工智能在教育领域的应用。通过图像识别,可以进行试卷批改、识题、机器答题等。通过语音识别可以纠正和改善发音;人机交互可以在线回答问题。AI+教育,可以在一定程度上改善教育行业师资分布以及成本问题,从工具层面为师生提供更高效的学习方式,但无法对教育内容产生更实质性的影响。
8.物流管理领域
物流行业利用智能搜索、推理规划、计算机视觉、智能机器人等技术,在配送、装卸、运输、仓储等过程中进行了自动化改造,基本可以实现无人化作业。比如利用大数据对商品进行智能配送规划,优化物流供给、需求匹配、物流资源的配置等。
结语:以上就是首席CTO笔记为大家整理的关于人工智能用于哪些场景中的相关内容解答汇总了,希望对您有所帮助!如果解决了您的问题欢迎分享给更多关注此问题的朋友喔~