首页>>人工智能->人工智能研究领域有哪些?

人工智能研究领域有哪些?

时间:2023-12-02 本站 点击:0

导读:本篇文章首席CTO笔记来给大家介绍有关人工智能研究领域有哪些的相关内容,希望对大家有所帮助,一起来看看吧。

人工智能有哪些领域?

当前人工智能重点聚焦在7大领域,分别为: 家具家电、零销、例无人便利店、聪慧物流信息系统、客流统计等、路网、诊疗、教育、货运、安防。

范畴

语言的学习与处理,知识表现,智能搜索,推理,规划,机器学习,知识获取,组合调度问题,感知问题,模式识别,逻辑程序设计,软计算,不精确和不确定的管理,人工生命,神经网络,复杂系统,遗传算法人类思维方式,最关键的难题还是机器的自主创造性思维能力的塑造与提升。

安全问题

人工智能还在研究中,但有学者认为让计算机拥有智商是很危险的,它可能会反抗人类。这种隐患也在多部电影中发生过,其主要的关键是允不允许机器拥有自主意识的产生与延续,如果使机器拥有自主意识,则意味着机器具有与人同等或类似的创造性,自我保护意识,情感和自发行为。

人工智能的主要研究领域有哪些

工智能(Artificial Intelligence)是研究、开发用于模拟、延伸和扩展人智能的理论、方法、技术及应用系统的一门新技术科学。人工智能领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。

人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新技术科学。

人工智能是计算机科学的一个分支,它企图了解智能的实质,可以产出一种新的可以和人类智能相似的方式做出反应的智能机器,该领域的研究主要有机器人、语言识别、图像识别、自然语言处理和专家系统等。

自从人工智能诞生以来,理论和技术越来越成熟,应用领域在不断的扩大,可以设想,未来人工智能带来的科技产品,将会是人类智慧的“容器”。人工智能可以把人的意识、思维的信息过程的模拟。虽然人工智能不是人的智能,但可以像人那样思考、最终可能超过人的智能。

优点:

1、在生产方面,效率更高且成本低廉的机器及人工智能实体代替了人的各种能力,人类的劳动力将大大被解放。

2、人类环境问题将会得到一定的改善,较少的资源可以满足更大的需求。

3、人工智能可以提高人类认识世界、适应世界的能力。

缺点:

1、人工智能代替了人类做各种各样的事情,人类失业率会明显的增高,人类就会处于无依靠可生存的状态。

2、人工智能如果不能合理利用,可能被坏人利用在犯罪上,那么人类将会陷入恐慌。

3、如果我们无法很好控制和利用人工智能,我们反而会被人工智能所控制与利用,那么人类将走向灭亡,世界也将变得慌乱。

人工智能的研究领域有哪些呢?

人工智能的研究方向可以划分为三层,分别是基础层、技术层和应用层,常见的机器学习、自然语言处理、语音识别等都属于技术层。

基础层是推动人工智能发展的基石,主要包括数据、芯片和算法三个方面,技术层主要是应用技术提供方,应用层大多是技术使用者,这三者形成一个完整的产业链,并相互促进。不过,很多企业(特别是大型科技公司)业务线较长,很多时候既是技术提供方,也是技术的使用者,因而很难有清晰的界定。技术层主要分为三个领域:机器学习、语音识别和自然语言处理、以及计算机视觉。在【AI应用】领域,中国呈现出爆发的趋势,目前主要集中在安防、金融、医疗、教育、零售、机器人以及智能驾驶等领域。

更多关于人工智能的相关内容,建议搜索达内教育了解一下。达内教育对标企业人才标准,制定专业学习计划,囊括主流热点技术,课程穿插大厂真实项目讲解,理论知识+学习思维+实战操作,打造完整学习闭环。实战讲师经验丰富,多种班型任你选择。

人工智能领域都有哪些

什么是人工智能?

人工智能是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学,是认知、决策、反馈的过程。

人工智能技术的细分领域有哪些?

人工智能技术应用的细分领域:深度学习、计算机视觉、智能机器人、虚拟个人助理、自然语言处理—语音识别、自然语言处理—通用、实时语音翻译、情境感知计算、手势控制、视觉内容自动识别、推荐引擎等。

下面,我们就每个细分领域,从概述和技术原理角度稍微做一下展开,供大家拓展一下知识。

1、深度学习

深度学习作为人工智能领域的一个重要应用领域。说到深度学习,大家第一个想到的肯定是AlphaGo,通过一次又一次的学习、更新算法,最终在人机大战中打败围棋大师。

对于一个智能系统来讲,深度学习的能力大小,决定着它在多大程度上能达到用户对它的期待。。

深度学习的技术原理:

1.构建一个网络并且随机初始化所有连接的权重; 2.将大量的数据情况输出到这个网络中; 3.网络处理这些动作并且进行学习; 4.如果这个动作符合指定的动作,将会增强权重,如果不符合,将会降低权重; 5.系统通过如上过程调整权重; 6.在成千上万次的学习之后,超过人类的表现;

2、计算机视觉

计算机视觉是指计算机从图像中识别出物体、场景和活动的能力。计算机视觉有着广泛的细分应用,其中包括,医疗领域成像分析、人脸识别、公关安全、安防监控等等。

计算机视觉

计算机视觉的技术原理:

计算机视觉技术运用由图像处理操作及其他技术所组成的序列来将图像分析任务分解为便于管理的小块任务。

3、语音识别

语音识别,是把语音转化为文字,并对其进行识别、认知和处理。语音识别的主要应用包括电话外呼、医疗领域听写、语音书写、电脑系统声控、电话客服等。

语音识别

语音识别技术原理:

1、 对声音进行处理,使用移动函数对声音进行分帧; 2、 声音被分帧后,变为很多波形,需要将波形做声学体征提取; 3、 声音特征提取之后,声音就变成了一个矩阵。然后通过音素组合成单词;

4、虚拟个人助理

苹果手机的Siri,以及小米手机上的小爱,都算是虚拟个人助理的应用。

虚拟个人助理技术原理:(以小爱为例)

1、用户对着小爱说话后,语音将立即被编码,并转换成一个压缩数字文件,该文件包含了用户语音的相关信息; 2、由于用户手机处于开机状态,语音信号将被转入用户所使用移动运营商的基站当中,然后再通过一系列固定电 线发送至用户的互联网服务供应商(ISP),该ISP拥有云计算服务器; 3、该服务器中的内置系列模块,将通过技术手段来识别用户刚才说过的内容。

5、自然语言处理

自然语言处理(NLP),像计算机视觉技术一样,将各种有助于实现目标的多种技术进行了融合,实现人机间自然语言的通信。

NLP

自然语言处理技术原理:

1、汉字编码词法分析; 2、句法分析; 3、语义分析; 4、文本生成; 5、语音识别;

6、智能机器人

智能机器人在生活中随处可见,扫地机器人、陪伴机器人……这些机器人不管是跟人语音聊天,还是自主定位导航行走、安防监控等,都离不开人工智能技术的支持。

智能机器人技术原理:

人工智能技术把机器视觉、自动规划等认知技术、各种传感器整合到机器人身上,使得机器人拥有判断、决策的能力,能在各种不同的环境中处理不同的任务。智能穿戴设备、智能家电、智能出行或者无人机设备其实都是类似的原理。

7、引擎推荐

淘宝、京东等商城,以及36氪等资讯网站,会根据你之前浏览过的商品、页面、搜索过的关键字推送给你一些相关的产品、或网站内容。这其实就是引擎推荐技术的一种表现。

Google为什么会做免费搜索引擎,目的就是为了搜集大量的自然搜索数据,丰富他的大数据数据库,为后面的人工智能数据库做准备。

引擎推荐技术原理:

推荐引擎是基于用户的行为、属性(用户浏览行为产生的数据),通过算法分析和处理,主动发现用户当前或潜在需求,并主动推送信息给用户的浏览页面。

人工智能的应用领域有哪些?

什么是人工智能呢?

人工智能是一个新的计算机技术科学,是计算机科学的一个分支,主要用于开发模拟,延伸和扩展人的智能理论。简单来说人们就是要靠人工智能去完成人类完成不了的工作。其中的研究领域主要包括:深度学习、自然语言处理、计算机视觉、智能机器人、自动程序设计、数据挖掘等方面。

1、深度学习悟空电话机器人为企业提升80%的销售业绩

深度学习是基于现有的数据,进行操作学习,深度学习是机械学习中的新的领域,谭恩能够模仿人脑的机制来解释数据,完成对声音,文本的解析。

2、自然语言处理是人工智能的学科

自然语言处理是用自然语言同计算机进行通讯的一种技术,自然语言处理我想是大家接触得最多的领域,在淘宝客服或者联通移动的客服中心有听到过机器人的讲话。机器人可以代替人查询资料,解答问题,摘录文摘,汇编资料等。

3、计算机视觉

简单来说就是用摄像机和电脑代替人眼对目标进行识别,跟踪,测量的一项技术,在我们的生活中应用的实际例子也有很多。比如,人脸检测,人脸支付,人脸打卡等。

4、智能机器人

智能机器人的发展方向就是给机器装上:“大脑芯片”拥有相同的传感器和外部信息的传感器如,听觉,触觉和嗅觉等。给大脑装上芯片可以在认知学习,自动组织模糊信息等方面取得更大的进步。

5、自动程序设计

自动程序设计的任务是设计一个程序系统,关于程序要求实现目标高级的描述,然后自动生成一个具体的程序。该研究的重大贡献之一是把程序调试的概念作为问题求解的策略来使用。

6、数据挖掘

数据挖掘一般是指从大量的数据中通过算法搜索隐藏于其中信息的过程。它通常与计算机科学有关,并通过统计、在线分析处理、情报检索、机器学习、专家系统(依靠过去的经验法则)和模式识别等诸多方法来实现上述目标。它的分析方法包括:分类、估计、预测、相关性分组或关联规则、聚类和复杂数据类型挖掘

AI研究领域有哪些?

目前人工智能的研究方向常见领域如下:

1. Reasoning, problem solving演绎、推理和解决问题:逐步推导的方式寻找更有效的算法

2. Knowledge representation知识表示法:让机器存储相应的知识,并且能够按照某种规则推理演绎得到新的知识。

3. Planning规划:建立可预测的世界模型,选择功效最大的行为,即可以够制定目标和实现这些目标的规范。

4. Learning机器学习:让机器从用户和输入数据等处获得知识,从而让机器自动地去判断和输出相应的结果。

5. Natural language processing自然语言处理:探讨如何处理及运用自然语言,自然语言认知则是指让电脑“懂”人类的语言。自然语言生成系统把计算机数据转化为自然语言。自然语言理解系统把自然语言转化为计算机程序更易于处理的形式。

6. Perception感知:机器感知是指能够使用传感器所输入的资料(如照相机、麦克风、声纳以及其他的特殊传感器)然后推断世界的状态。计算机视觉能够分析影像输入。另外还有语音识别、人脸识别和物体识别。

7. Motion and manipulation运动和控制:机器人。

8. Social intelligence社会智慧:情感计算,了解他们的动机和情感状态,代理人能够预测别人的行动。(这涉及博弈论、决策理论以及能够塑造人的情感和情绪感知能力检测)

9. Artificial General intelligence(AGI) 通用人工智能:又称为(Strong AI)强AI:具备与人类同等智慧、或超越人类的人工智能,能表现正常人类所具有的所有智能行为。目前人工智能研究阶段只停留在弱人工智能(applied AI,narrow AI,weak AI, artificial narrow intelligence, ANI)只处理特定的问题。弱人工智能不需要具有人类完整的认知能力,甚至是完全不具有人类所拥有的感官认知能力,只要设计得看起来像有智慧就可以了。而强人工智能也指通用人工智能(artificial general intelligence,AGI),或具备执行一般智慧行为的能力,通常把人工智能和意识、感性、知识和自觉等人类的特征互相连结。

结语:以上就是首席CTO笔记为大家整理的关于人工智能研究领域有哪些的全部内容了,感谢您花时间阅读本站内容,希望对您有所帮助,更多关于人工智能研究领域有哪些的相关内容别忘了在本站进行查找喔。


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如若转载,请注明出处:/AI/9155.html