首页>>互联网>>大数据->哪个指标是教育大数据分析过程的好指标(2023年最新整理)

哪个指标是教育大数据分析过程的好指标(2023年最新整理)

时间:2023-12-09 本站 点击:0

导读:今天首席CTO笔记来给各位分享关于哪个指标是教育大数据分析过程的好指标的相关内容,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!

投资教育行业要看哪些投资分析指标

投资教育行业要看成本端核心指标投资分析指标。

新客获取成本的核心变量是低价正价转化率:随着品牌逐步发展,口碑引流占比提升,广告投放占比下降,以及低价正价转化率逐步提升,正价课用户获客成本有望逐渐降低。

教育是培养新生一代准备从事社会生活的整个过程,也是人类社会生产经验得以继承发扬的关键环节,主要指学校对适龄儿童、少年、青年进行培养的过程。广义上讲,凡是增进人们的知识和技能、影响人们的思想品德的活动,都是教育。

好的数据指标具备哪些特征?

1、准确性

这是最根本的一条原则。这个准确有二个层面的意思,一个是数据指标在技术实现过程中,是准确的,不会出现代码逻辑写错,源数据取错。二个统计源数据的源头的数据是对的,如果统计数据指标的基础数据都是错了,那就更666了。一个公司数据收集与记录的准确、完整也一定是一个持续迭代的工程,当然这属于哪一个话题,有空再论。

2、有效性

数据指标的能真实反映要能衡量相对的业务场景商业目标,例如:要针对衡量一个网站流量质量设计一个指标,使用UV来衡量是错误的。使用跳出率来衡量,有一定的有效性,但还是不够有效;使用转化率也许才是比较合适的(不同公司所要追求的商业目标不一样,所以设计的数据指标是不一样的),用最近期望用户完成的商业动作访问数/进来的访客数。

3、周期性

数据指标需要定期去复盘。像KPI的指标定义,例如:销售额可能根据当前商业的目标不同,计算口径可能会发生很大的变化。同时,对各个数据指标也要定期进行复盘,是否还可以继续衡量,数据指标还是否有意义。随时KPI指标的变化,往往很多指标的口径也要变更,数据开发最怕就是这个,口径变换要重刷历史。

4、可实现性

在实际企业中,可能受限数据的完整性因素,很多指标没有办法计算得到。例如:公司的市场占有率往往是很难统计,因为整个市场份额这个数据很难获取。电商中每个订单的成本的计算也很难,广告费用、仓储、人员工资、仓储、物流配送等。所以在数据指标的可实现性上往往需要先实现简单的,再根据数据应用深入,数据团队技术强大不断再完善复杂的指标。

关于好的数据指标具备哪些特征,青藤小编就和您分享到这里了。如果你对大数据工程有浓厚的兴趣,希望这篇文章能够对你有所帮助。如果您还想了解更多数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。

大数据对教育教学的作用

随着大数据技术的进步与不断发展,对现代教育所带来的影响是必然的。运用大数据来开展教学工作能有效地改变以往单一、固定的教育教学方法,运用大数据督导来帮助学校做好教育教学工作,能够形成科学、合理、智慧的教学模式。因此,在新时期里,学校必须要努力适应新时代发展,运用新的方法去开展教育工作,以提高学校的教学效率和质量,有针对性地开展教学工作,解决教育过程中所存在的难题,努力实现变革,有助于学校做好教学督导工作,也能够让学校办学变得更规范、合理,从而更好地接受社会大众与教育部门的监督[1]。

二、利用大数据加强教育教学工作

将大数据运用教育改革当中,有利于现代教育工作的开展,起到更好的督导作用。特别是将大数据技术运用到日常教学分析及收集更多教学资源中去,为制定出更好的教学方案提供科学依据。因此,在开展日常教育教学过程中,教师应合理运用大数据,能够从日常教学中的个例找到共同点,通过分析不同教学案例,找出教学中存在的一些问题,针对这些问题,制订出一些具有可行性的执行方案,根据主要问题开展教育督导工作。另外,教师也可通过其他数据库获取一些教学案例与方法,获得更多的经验,并且为更高效开展日常教育工作而做好准备,解决教学效率不高等问题,改变以往单一的教学方式,使得督导手段变得更加多样、更加丰富。运用大数据来督导现代教学,能使教学机制变得更透明、更合理,能够形成统一、有序的教学思路,从而更好地开展教学工作,同时还能够形成强有力的监督机制。例如,由于运用了大数据进行督导,使得学校教学管理变得更加透明,便于接受社会大众及教育部门监督,学校办学变得更加规范,从而提高了学校教育质量和效率。

数据分析指标有那些?

用户行为类指标

用户行为指标是互联网行业和传统行业最大区别。传统行业,用户行为发生在门店里,极难用数字化手段记录,因此只有在发生交易时,才能记录数据。

传统企业的大部分数据都是交易数据。而互联网行业依托小程序/H5/APP,能记录用户在每个页面的点击,相当于在网上店铺的每一步动作都有记录,因此能分析很多东西。

具体到指标上,可以套用AARRR模型,分模块展开:

拉新:主要用于分析拉新的转化效率与质量。拉新是很多互联网公司最重要的任务,拉新成本是很多互联网公司最大的成本支出,因此拉新关注度极高。

用户活跃类指标:用户活跃类指标是日常关注的重点。活跃用户是一切业务的基础,且活跃行为是可以每日记录的,因此运营/产品部门日常都盯得很紧。

用户留存类指标:留存指标一般和拉新/活跃指标结合起来看。由于留存统计相对滞后(要等XX天才能统计),因此一般是月度复盘/事后分析的时候看的多。

用户转化类指标:用户转化一般指付费行为,这是互联网商业模式变现的重要渠道。看的指标主要围绕有多少人买,买了多少,是否连续购买等展开。这里和传统企业的会员消费分析很像,能衍生出很多子指标。

用户转介绍类指标:用户转介绍行为类型很多,转发内容/转发商品/介绍新用户加入等,都是转介绍行为。因此转介绍行为的定义常常会结合具体的转介绍形态而变化。很少有统一的指标。如果一定要概括的话,可以概括为:

有转介绍行为人数:发生转发内容/转发商品/介绍新用户的用户人数

转介绍行为带来的效果:新注册用户/商品购买/内容阅读等等

除了AARRR以外,还有一类特殊的行为:风险类行为,用于识别用户的危险动作。在不同业务场景,风险定义不同。比如电商场景下刷单、薅羊毛,游戏场景下外挂使用,金融场景下欺诈交易等等。

产品类指标

产品类指标是互联网行业特色。用户在互联网APP/H5/小程序内会使用不同的功能,好用的话会一直用,不好用会中途放弃,这些都能记录数据,从而通过产品分析,不断淘汰没人用的功能,优化有人用的功能,提升效率。

产品分析的常见指标如下:

请点击输入图片描述

注意:产品分析是有级别的,最高级的是对整个APP/H5/小程序的页面/功能做盘点。其次是对某一个具体页面(比如首页、商品详情页、购物车页)或者某一个具体路径(比如从首页的banner位点广告进入商品详情,再选择商品进行交易这样一条路径)进行分析。

最细的则是分析某一次改版的,某一个按钮/页面布局调整等等。上边举例的指标更多是对页面/路径分析的指标,其他情况,有空再详细分享。

内容类指标

内容类指标也是互联网行业的特色。互联网上发布的视频/图文,能记录阅读情况。一般内容运营/营销推广/新媒体运营等与内容打交道密切的部门,会很关注这一类指标。

常见的内容指标如下:

请点击输入图片描述

通过这些指标的分析,创作内容的部门,比如:内容运营/新媒体运营,能找到哪些内容阅读高,哪些转发多,从而总结出写文章的套路,提升内容传播范围。利用内容的部门,比如营销推广,能关注哪些内容带来的转化好,从而提高推广效率。

活动类指标

活动类指标,在互联网和传统行业都很常见。相比之传统行业,互联网行业的营销活动密度更高、力度更大,经常是烧钱换增长。因此活动相关指标关注度很高。

常见的活动指标如下:

请点击输入图片描述

通过这些指标的分析,能让负责活动的同事直观看到活动效果,并且在不同类型/不同力度活动进行比较,找到更高效开展活动的方式。

有些活动会包含多个角色,比如拼团活动,会同时有团长/团员两个角色;裂变类活动,有裂变发起人/参与者两个角色。

不同角色的参与条件、达标动作、达标奖励不太一样,因此可以拆分两类群体,分别看活动目标人数/参与人数/达标人数等指标。

商品类指标

商品类指标,在互联网和传统行业都很常见。区别是传统企业大部分是实物商品,互联网则有一堆虚拟商品,比如虚拟货币、会员特权、游戏装备、直播打赏等等等。

因此互联网行业的商品管理,有可能比传统行业简单一点,不需要那么焦虑的盯着库存周转指标,生怕在仓库里待久了,货都过期了。

常见的商品指标如下:

请点击输入图片描述

通过这些指标的分析,能让负责商品运营的同事直观看到商品畅销/滞销情况,从而调整商品进销存计划,避免商品积压/缺货。

注意,虚拟商品原则上是没有库存的(或者说库存想设多少设多少)。但是滥发虚拟商品,又会引发互联网中通货膨胀与商品贬值。比如游戏里稀有皮肤卖的贵,是因为稀有才贵,为了短期收入搞大优惠,一但烂大街,反而大家都不稀罕了。

所以控虚拟商品的库存,不是看商品动销率或者在库时间,而是看GMV整体目标。在达成GMV整体目标情况下,高中低端商品保持一个稳定的库存结构,避免烂大街。

好的数据指标有哪些特征?

1、精确性

这个精确有二个层面的意思,一个是数据目标在技能完成过程中,是精确的,不会出现代码逻辑写错,源数据取错。二个计算源数据的源头的数据是对的,如果计算数据目标的根底数据都是错了,那就更666了!一个公司数据搜集与记录的精确、完整也一定是一个持续迭代的工程,当然这属于哪一个话题,有空再论。

2、有用性

数据目标的能真实反映要能衡量相对的事务场景商业目标,例如:要针对衡量一个网站流量质量设计一个目标,运用UV来衡量是过错的。运用跳出率来衡量,有一定的有用性,但还是不行有用;运用转化率或许才是比较合适的(不同公司所要寻求的商业目标不一样,所以设计的数据目标是不一样的),用最近期望用户完成的商业动作访问数/进来的访客数。

3、周期性

数据目标需求定时去复盘。像KPI的目标定义,例如:销售额或许依据当前商业的目标不同,核算口径或许会产生很大的变化。一起,对各个数据目标也要定时进行复盘,是否还能够持续衡量,数据目标还是否有意义。随时KPI目标的变化,往往许多目标的口径也要变更,数据开发最怕就是这个,口径改换要重刷历史。

4、可完成性

在实际企业中,或许受限数据的完整性要素,许多目标没有办法核算得到。例如:公司的市场占有率往往是很难计算,由于整个市场份额这个数据很难获取。电商中每个订单的本钱的核算也很难,广告费用、仓储、人员工资、仓储、物流配送等。所以在数据目标的可完成性上往往需求先完成简略的,再依据数据使用深入,数据团队技能强大不断再完善复杂的目标。

关于好的数据指标有哪些特征,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。

结语:以上就是首席CTO笔记为大家整理的关于哪个指标是教育大数据分析过程的好指标的相关内容解答汇总了,希望对您有所帮助!如果解决了您的问题欢迎分享给更多关注此问题的朋友喔~


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如若转载,请注明出处:/BigData/22075.html