导读:很多朋友问到关于以下哪个属于大数据的特性的相关问题,本文首席CTO笔记就来为大家做个详细解答,供大家参考,希望对大家有所帮助!一起来看看吧!
大数据具有哪些特征.答案
大数据的5V特点(IBM提出):Volume(大量)、Velocity(高速)、Variety(多样)、Value(低价值密度)、Veracity(真实性)。
大数据(big data),指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。
在维克托·迈尔-舍恩伯格及肯尼斯·库克耶编写的《大数据时代》 中大数据指不用随机分析法(抽样调查)这样捷径,而采用所有数据进行分析处理。
扩展资料:
一、具体特征
容量(Volume):数据的大小决定所考虑的数据的价值和潜在的信息。
种类(Variety):数据类型的多样性。
速度(Velocity):指获得数据的速度。
可变性(Variability):妨碍了处理和有效地管理数据的过程。
真实性(Veracity):数据的质量。
复杂性(Complexity):数据量巨大,来源多渠道。
价值(value):合理运用大数据,以低成本创造高价值。
二、运用
洛杉矶警察局和加利福尼亚大学合作利用大数据预测犯罪的发生。
google流感趋势(Google Flu Trends)利用搜索关键词预测禽流感的散布。
统计学家内特.西尔弗(Nate Silver)利用大数据预测2012美国选举结果。
麻省理工学院利用手机定位数据和交通数据建立城市规划。
梅西百货的实时定价机制。根据需求和库存的情况,该公司基于SAS的系统对多达7300万种货品进行实时调价。
医疗行业早就遇到了海量数据和非结构化数据的挑战,而近年来很多国家都在积极推进医疗信息化发展,这使得很多医疗机构有资金来做大数据分析。
参考资料来源:百度百科-大数据
大数据的特征包括
1、大量性(Volume):数据的大小决定所考虑的数据的价值和潜在的信息。
2、多样性(Variety):数据类型的多样性。
3、高速性(Velocity):指获得数据的速度。
4、可变性(Variability):妨碍了处理和有效地管理数据的过程。
5、真实性(Veracity):数据的质量。
6、复杂性(Complexity):数据量巨大,来源多渠道。
7、价值(value):合理运用大数据,以低成本创造高价值。
什么是大数据:
大数据(Big data)按照Gartner给出的定义:“大数据”是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力来适应海量、高增长率和多样化的信息资产。
哪些是大数据的基本特征?
容量、种类、速度、可变性、真实性、复杂性、价值。
大数据的特征:
容量(Volume):数据的大小决定所考虑的数据的价值和潜在的信息;
种类(Variety):数据类型的多样性;
速度(Velocity):指获得数据的速度;
可变性(Variability):妨碍了处理和有效地管理数据的过程。
真实性(Veracity):数据的质量
复杂性(Complexity):数据量巨大,来源多渠道
价值(value):合理运用大数据,以低成本创造高价值
大数据的结构:
大数据包括结构化、半结构化和非结构化数据,非结构化数据越来越成为数据的主要部分。据IDC的调查报告显示:企业中80%的数据都是非结构化数据,这些数据每年都按指数增长60%。[7]大数据就是互联网发展到现今阶段的一种表象或特征而已,没有必要神话它或对它保持敬畏之心,在以云计算为代表的技术创新大幕的衬托下,这些原本看起来很难收集和使用的数据开始容易被利用起来了,通过各行各业的不断创新,大数据会逐步为人类创造更多的价值。
其次,想要系统的认知大数据,必须要全面而细致的分解它,着手从三个层面来展开:
第一层面是理论,理论是认知的必经途径,也是被广泛认同和传播的基线。在这里从大数据的特征定义理解行业对大数据的整体描绘和定性;从对大数据价值的探讨来深入解析大数据的珍贵所在;洞悉大数据的发展趋势;从大数据隐私这个特别而重要的视角审视人和数据之间的长久博弈。
第二层面是技术,技术是大数据价值体现的手段和前进的基石。在这里分别从云计算、分布式处理技术、存储技术和感知技术的发展来说明大数据从采集、处理、存储到形成结果的整个过程。
第三层面是实践,实践是大数据的最终价值体现。在这里分别从互联网的大数据,政府的大数据,企业的大数据和个人的大数据四个方面来描绘大数据已经展现的美好景象及即将实现的蓝图。
结语:以上就是首席CTO笔记为大家介绍的关于以下哪个属于大数据的特性的全部内容了,希望对大家有所帮助,如果你还想了解更多这方面的信息,记得收藏关注本站。