本篇文章首席CTO笔记来给大家介绍有关python查看列有多少类别以及python 判断列表的相关内容,希望对大家有所帮助,一起来看看吧。
本文目录一览:
1、dataframe python 怎么查看所有列2、Python有哪些种类?3、python 查看dataframe每列有多少个不同元素4、pandas中查看数据类型的几种方式5、python数据类型都有哪些6、python常见数据类型dataframe python 怎么查看所有列
什么意思?查dataframe一共多少行吗?
直接len(df['列名']),取一列求长度即可。
Python有哪些种类?
Python有哪些种类?
1、数值型(Numbers)
2、布尔型(Booleans)
3、字符串(String)
4、Python容器
要快速学会Python,谨记‘3个’‘4类’‘5大’‘6种’这四个数字就可以了。
三个基本概念
1. 结构化(函数、模块、包)
2. 面向对象(类及派生类、重载)
3. 虚拟环境(版本管理、环境隔离)
四类基本操作
1. 数据操作(各种数据类型的操作)
2. 文件操作(文件打开读写关闭等操作)
3. 模块操作(导入使用、模块查寻等操作)
4.并发操作(进程与线程、锁/信号号/安全队列等)
五大基本语句(5)
1. 赋值语句(变量、对象、赋值运算符)
2. 输入输出语句(print, input函数)
3. 条件判断语句(if-elif-else语句)
4. 循环语句(遍历循环for-in-else、条件循环while-else、break/continue)
5. 异常处理语句(try-except-else-finally)
六种数据类型(6)
1. 数字类型(int,bool,float,complex)
2. 字符串(str)
3. 列表(list)
4. 元组(tuple)
5. 字典(dict)
6. 集合(set)
如果你能够把上面的几个要点都掌握了,那么就算是真正地入门了。
python 查看dataframe每列有多少个不同元素
方法一:
mylist = set(say) #say为所要统计的列表
for item in mylist: #将列表中的元素无重复的抽取出来,赋值给另一个列表
print item + str( say.count(item)) #list.count(item) 输出item在list中出现的次数
方法二:
counts = { } #字典
for x in time_zones: #time_zones 为列表
if x in counts:
counts[x] += 1
else:
counts[x] = 1
print counts
方法三:
(Series与Datafram用法相同)
import numpy as np
import pandas as pd
from pandas import DataFrame
from pandas import Series
ss = Series(['Tokyo', 'Nagoya', 'Nagoya', 'Osaka', 'Tokyo', 'Tokyo'])
ss.value_counts() #value_counts 直接用来计算series里面相同数据出现的频率
扩展资料:
python函数的其他高级用法
1.使用函数变量:
Python 的函数也是一种值:所有函数都是 function 对象,这意味着可以把函数本身赋值给变量,就像把整数、浮点数、列表、元组赋值给变量一样。
2.使用函数作为函数形参:
有时候需要定义一个函数,该函数的大部分计算逻辑都能确定,但某些处理逻辑暂时无法确定,这意昧着某些程序代码需要动态改变,如果希望调用函数时能动态传入这些代码,那么就需要在函数中定义函数形参,这样即可在调用该函数时传入不同的函数作为参数,从而动态改变这段代码。
3.使用函数作为返回值:
程序中,定义了一个 get_math_func() 函数,该函数将返回另一个函数。接下来在 get_math_func() 函数体内的 ①、②、③ 号粗体字代码分别定义了三个局部函数,最后 get_math_func() 函数会根据所传入的参数,使用这三个局部函数之一作为返回值。
在定义了会返回函数的 get_math_func() 函数之后,接下来程序调用 get_math_func() 函数时即可返回所需的函数。
pandas中查看数据类型的几种方式
在获得数据之后、分析数据之前,我们一般需要对数据总体进行一个概览,如有哪些字段,每个字段的类型,值是否缺失等,以下列出了几种方法,供我们方便快捷的查看dataframe的数据类型。
1、维度查看:df.shape
返回结果如下如所示,说明此表格一共有20w+行,16列:
2、数据表基本信息(维度、列名称、数据格式、所占空间等):df.info()
返回结果如图,可见,用info方法可以非常全面的看出表格的各项属性,包括:
1.表格的维度:203401行 * 16列,RangeIndex:0-203400
2.表格的列名,是否为空值和列字段类型dtype(后面我会给出pandas的数据类型和Python数据类型的匹配关系图!!!)
3.表格所占空间:24.8M+
3、每一列数据的格式:df.dtypes
这个功能与df.info()类似,如果只想查看每一列存储的是什么数据格式,那么可以直接使用df.dtypes
返回结果如图,可以看到,这个结果基本就是df.info()的简化版,指明了各列的数据类型。
4、某一列格式:df['B'].dtype
分析过程中,由于字段繁多,所以用到某字段时需要适时查看,同样可以运用dtype,此处不再赘述。
由上文可见,float64,int64,object都是pandas专有的数据格式,同理,Python,numpy都有自己的一套数据格式,它们之间的对应关系可参考下面的表格:
这里需要强调的是object类型实际上可以包括多种不同的类型,比如一列数据里,既有整型、浮点型,也有字符串类型,这些在pandas中都会被标识为‘object’,所以在处理数据时,可能需要额外的一些方法提前将这些字段做清洗,str.replace(),float(),int(),astype(),apply()等等。
如果觉得有用,给我点个赞吧,你的支持就是对我最大的鼓励!ღ( ´・ᴗ・` )❥
python数据类型都有哪些
数据类型是每种编程语言必备的属性,只有给数据赋予明确的数据类型,计算机才能对数据进行处理运算,因此,使用正确的数据类型是十分有必要的,以下是Python编程常用的数据类型:
一、数字型
Python数字类型主要包括int(整型)、long(长整型)和float(浮点型),但是在Python3中就不再有long类型了。
1、int(整型)
在32位机器上,整数的位数是32位,取值范围是-231~231-1,即-2147483648~214748364;在64位系统上,整数的位数为64位,取值范围为-263~263-1,即9223372036854775808~9223372036854775807。
2、long(长整型)
Python长整型没有指定位宽,但是由于机器内存有限,使用长的长整数数值也不可能无限大。
3、float(浮点型)
浮点型也就是带有小数点的数,其精度和机器有关。
4、complex(复数)
Python还支持复数,复数由实数部分和虚数部分构成,可以用 a + bj,或者 complex(a,b) 表示, 复数的实部 a 和虚部 b
都是浮点型。
二、字符串
在Python中,加了引号的字符都被认为是字符串,其声明有三种方式,分别是:单引号、双引号和三引号;Python中的字符串有两种数据类型,分别是str类型和unicode类型,str类型采用的ASCII编码,无法表示中文,unicode类型采用unicode编码,能够表示任意字符,包括中文和其他语言。
三、布尔型
和其他编程语言一样,Python布尔类型也是用于逻辑运算,有两个值:True(真)和False(假)。
四、列表
列表是Python中使用最频繁的数据类型,集合中可以放任何数据类型,可对集合进行创建、查找、切片、增加、修改、删除、循环和排序操作。
五、元组
元组和列表一样,也是一种序列,与列表不同的是,元组是不可修改的,元组用”()”标识,内部元素用逗号隔开。
六、字典
字典是一种键值对的集合,是除列表以外Python之中最灵活的内置数据结构类型,列表是有序的对象集合,字典是无序的对象集合。
七、集合
集合是一个无序的、不重复的数据组合,它的主要作用有两个,分别是去重和关系测试。
python常见数据类型
一,python整数类型所表示的数据。
1,一般用以表示一类数值:所有正整数,0和负整数;
2,整型作为最常用的,频繁参与计算的数据类型,在python3.5中解释器会自动在内存中创建-5-3000之间的(包含5,不包含3000)整型对象,也就是说在该范围内,相等都是同一个已经创建好的整型对象。范围之外的即使相等也表示不同对象,该特性随python版本而改变,不要过于依赖。
3,bool型继承了int型,他是int的子类。
4,Python2中有长整型long,数值范围更大,在python3中已取消,所有整型统一由int表示。
5,参与所有数值计算,数学运算,科学计算。这也是所有编程语言都有的数据类型,因为编程语言生而需要模拟人的思维,借助数学方式,自动计算、更好的解决大量重复性的事务,因此数值类型、整数类型在编程语言中不可或缺。
6,支持二进制(0b\0B开头),十进制,八进制(0o\0O),十六进制(0x\0X)
二,python整数和浮点型支持常规的数值运算
整数和浮点数都可参与的运算:+ - * / %(取余) //(整除) **(幂)
Python字符型:
python字符型表示的数据:
python3支持Unicode编码,由字母、数字和符号组成的形式就叫字符串,更接近或者相同与人们文字符号表示,因此在信息表示和传递时它也是最受认可的形式。在程序编写中也是非常常用,对应的可操作的方法也很多,很有意思。
字符串不可被修改,可以拼接等方法创建新字符串对象;
支持分片和下标操作;a[2:]
支持+拼接,*重复操作和成员关系in/not in;
表示形式:用单引号双引号包含起来的符号;a = str(‘sdfsdfsdf’) 或 r’\t\nabcd’ 原始字符,Bytes:b’abcd’;
6,字符串属于不可变数据类型,内部机制为了节省空间,相同的两个字符串表示相同的一个对象。a = ‘python’ b = ‘python’ a is b :True
二, 字符串支持的运算方法
1,capitalize() :首字母大写后边的字母小写 a = ‘abcd’ b = a.capitalize() b:Abcd
2,casefold() lower():字母转换为全小写
3,center(width,fillchar) :居中,width填补的长度;fillchar添加的字符
a = a.center(10,’_’) //’____abcd____’ 默认无fillchar填充空格
4,count(sub,star,end) :字母计数:sub要查询的字符
5,encode(encoding=’utf-8’,errors=’strict’) 设置编码
Errors :设置错误类型
6,endswith(suffix,star,end) : 若以suffix结尾返回True
7,expandtabs(8) :设置字符串中tab按键符的空格长度:’\tabcde’
8,find(sub,star,end) : 返回指定范围内的字符串下标,未找到返回-1
9,index(sub,star,end) :返回指定范围字符串下标未找到抛出异常
10,isalnum() :判断字符串是否是字母或数字,或字母和数字组合
11,isalpha() :判断是否全是字母
12,isdecimal() :判断字符串是否是十进制数值
13,isdigit() :判断字符串是否是数字
14,isidentifier() :判断字符串中是否包含关键字
15,islower() :判断是否全小写
16,isnumeric() :判断全是数字
17,isspace() :判断是否是空格
18,isupper() 判断是否大写
19,istitle() :判断是否首字母大写
20,join(iterable) :把可迭代对象用字符串进行分割:a.join(‘123’)
21,ljust(width,fillchar);rjust() :左对齐右对齐
22, upper() :将字符串改为大写
23,split(sep=None,maxsplit=-1) :分割一个字符串,被选中字符在字符串中删除
‘ab1cd1efg’.split(‘1’) :[‘ab’,’cd’,’efg’]
三,字符串格式化:按照规格输出字符串
format(*args,**kwargs) :args位置参数,kwargs关键字参数
‘{0:.1f}’.format(123.468) :格式化参数,小数点后保留1位四舍五入
四,字符串操作符%
1,%s :格式化字符串 ‘abcd%sdef’%’dddd’
2,%d:格式化整数
3,%o格式化无符号八进制
4,%x格式化无符号十六进制
5,%f格式化定点数
6, %e: 科学计数法格式化定点数
7,%g 根据值大小自动选%f,%e
8, %G E X :大写形式
五,格式化辅助命令:
m.n :m最小总宽度,n小数点后位数:’%12.4f’%23456.789
六,转义字符:字符串前r避免转义:r’\nhello\thi’
\n:换行符
\t:横向制表符
\':'
\":"
\b:退格符
\r:回车
\v:纵向制表符
\f:换页符
\o,\x:八进制和十六进制
\0:空字符串
Python列表list
一,Python的列表list类型表示的数据:
Python列表在cpython中被解释为长度可变的数组,用其他对象组成的连续数组。
列表中元素可以是相同或不同的数据类型;
当列表元素增加或删除时,列表对象自动进行扩展或收缩内存,保证元素之间没有缝隙,总是连续的。
Python中的列表是一个序列,也是一个容器类型
创建列表:a = []; b = [1,’python’]; c = list(); d = list((1,3,4,5))
支持切片操作list[start,stop,step]
python列表常用方法
1,append添加单个元素:list.append(object); //a.append(‘python’)
2,extend添加可迭代对象: list.extend(iterable); //a.extend(‘abcde’/[1,2,3])
3,insert 插入元素:list.insert(index,object): 在index下标前插入元素//a.insert(2,’python’)
4,clear 清空所有元素:list.clear() //a.clear()
5,pop 删除并返回一个元素:list.pop(index) //默认删除默认一个元素
remove 删除指定元素:list.remove(v) ,v元素不存在报错 //a.remove(‘c’)
7,count 返回这个值在列表中数量:list.count(value)
8,copy 浅拷贝一个新列表:list.copy()
9,sort:排序list.sort(reverse=False/True) :默认升序
排序函数:sorted(list)
10,reverse: 原地翻转:list.reverse()
11,index(value,star,stop) :指定范围内该值下标:list.index(2,0,5)
列表元素访问:
下标访问:list[1]
For循环遍历
通过下标修改元素:list[2 ] = ‘hello’
列表常用运算符:
1,比较运算符:从第一个元素开始对比
2,+ 拼接一个新列表:l1+ l2
3, 重复操作符:* ,多个列表拼接
成员关系操作符:in/ not in
逻辑运算符:and not or
列表常用的排序方法:
冒泡排序;选择排序;快速排序;归并排序
Python元组tuple
一,Python元组tuple数据类型表示的数据:
元组是受到限制的、不可改变的列表;
可以是同构也可以是异构;
元组是序列类型、是可迭代对象,是容器类型。
元组的创建: a = (1,2,3)或a=1,2,3; b = tuple(); c = tuple(iterable)
支持切片操作tuple[start,stop,step]
二,python元组常用方法
1,index(value,star,stop) :指定范围内该值下标:tuple.index(2,0,5)
2,count(value) :值出现次数
三,支持运算:
1,比较运算符:从第一个元素开始对比
2,+ 拼接一个新元组:l1+ l2
3, 重复操作符:* ,多个元组拼接
4成员关系操作符:in/ not in
逻辑运算符:and not or
四,元组的访问
下标操作;
For循环遍历访问。
Python字典类型
一,Python字典dict表示的数据:{key:value}
可根据关键字:键快速索引到对应的值;
字典是映射类型,键值对一一对应关系,不是序列;
字典元素是无序的;
字典是可迭代对象,是容器类型;
字典的创建:k = {}; k1={‘keyword’:object}; k2 = dict();
K3 = dict(mapping); dict=(iterable)
二,字典的访问:
通过key:k[‘key’]
修改key对应的值:K[‘key’] = value
For循环遍历出来的是key;
For循环键值对:for I in d.items():
For 循环enumerate: for k,v in enumerate(k1):
In/not in 成员关系查询键不支持查值
三,字典常用方法
get(key,de):获取值:k.get(key,de) //若不存在则默认输出de
pop(k,de):删除一个键值对,不存在输出de,未设置报错;
keys() :返回字典所有key组成的序列:list(k.keys()) [1,2,3];
values():返回字典所有value组成的序列:list(k.values())
items():返回键值对组成的元组为元素的序列:(类set)list(k.items())
update(e):更新字典:e可是字典或两元素组成的单位元素序列:e=[(5,6),(7,8)];
k.update(e)
clear():清空字典;
popitem()删除某个键值对,若字典为空则报错
copy() :浅拷贝
10, fromkeys(iterable,value=None):从可迭代对象创建字典
{}.fromkeys([1,2,3]) -----{1:None,2:None,3:None}
11,setdefault(k,d=None) :若key不存在则生成一个键值对
k.setdefault(‘keyword’)
Python 集合set
集合表示的数据:
多个元素的无序组合,集合是无序的,集合元素是唯一的;
字典的键是由集合实现的;
集合是可迭代对象
集合创建:s = {1,2}; s1 = set(); s2 = set(iterable)
集合元素的访问:
For 循环将集合所有元素全部访问一遍,不重复
常用方法:
add(object):s.add(‘hi’) 向集合添加一个元素
pop() :弹栈,集合为空则报错:删除任意一个元素;
clear():清空集合,返回一个空集合对象;
remove(object):删除一个元素,不存在和报错:s.remove(‘hi’)
update(集合):更新另一个集合,元素不存在则不更新;
copy() :浅拷贝
集合的运算:
交集:s1s2;
差集,补集:s1-s2;
并集:s1|s2;
Issubset():判断是否是子集:s1.issubset(s2) s1是否s2的集合子集
Issuperset():判断是否是父集:s1.issuperset()
不可变集合:
Frozenset():返回一个空的不可变集合对象
Frozenset(iterable):
S = frozenset(iterable)
Python序列类型共同特性
一,序列类型共同特性
python序列类型有:str字符串,list列表,tuple元组
都支持下标索引,切片操作;
下标都是从0开始,都可通过下标进行访问;
拥有相同的操作符
二,支持的函数:
len(obj):返回对象长度;
list(iterable):将可迭代对象转为列表;
tuple(iterable):将可迭代对象转为元组;
str(ojb):将任何对象转为字符串形式;
max(iterable): python3中元素要是同类型,python2中元素可异构:max([‘a’,1])
min(iterable):和max类似;
sum(iterable,star=0),求可迭代对象和,默认star为0,元素不能为字符串
sorted(iterable,key=None,reverse=False)
s=[(‘a’,3),(‘b’,2),(‘c’,9)]
sorted(s,key=lambda s:s[1]) //按照数字排序
reversed(sequence):翻转序列,返回迭代器
enumerate(iterable):返回enumerate对象,其元素都是一个元组(下标,值)
zip(iter1,iter2): zip([1,2],[3,4]) ----[(1,3),(2,4)]
序列类型的切片操作:
Slice:
L[index]; 访问某个元素;
L[1:4]; 区间
L[star:stop:step]; 设置步长取区间元素
结语:以上就是首席CTO笔记为大家介绍的关于python查看列有多少类别和python 判断列表的全部内容了,希望对大家有所帮助,如果你还想了解更多这方面的信息,记得收藏关注本站。