首页>>人工智能->人工智能舞姿的作用有哪些(人工智能舞姿的作用有哪些呢)

人工智能舞姿的作用有哪些(人工智能舞姿的作用有哪些呢)

时间:2023-12-07 本站 点击:0

导读:本篇文章首席CTO笔记来给大家介绍有关人工智能舞姿的作用有哪些的相关内容,希望对大家有所帮助,一起来看看吧。

人工智能作用有哪些

一、人工智能是一门基于计算机科学,生物学,心理学,神经科学,数学和哲学等学科的科学和技术。人工智能的一个主要推动力要开发与人类智能相关的计算机功能,例如推理,学习和解决问题的能力。

二、人工智能之父 John McCarthy说:人工智能就是制造智能的机器,更特指制作人工智能的程序。人工智能模仿人类的思考方式使计算机能智能的思考问题,人工智能通过研究人类大脑的思考、学习和工作方式,然后将研究结果作为开发智能软件和系统的基础。

三、人工智能在以下各个领域占据主导作用

1游戏 :人工智能在国际象棋,扑克,围棋等游戏中起着至关重要的作用,机器可以根据启发式知识来思考大量可能的位置并计算出最优的下棋落子。

2自然语言处理 : 可以与理解人类自然语言的计算机进行交互。比如常见机器翻译系统、人机对话系统。

3专家系统 : 有一些应用程序集成了机器,软件和特殊信息,以传授推理和建议。它们为用户提供解释和建议。比如分析股票行情,进行量化交易。

4视觉系统 : 它系统理解,解释计算机上的视觉输入。例如,间谍飞机拍摄照片,用于计算空间信息或区域地图。医生使用临床专家系统来诊断患者。警方使用的计算机软件可以识别数据库里面存储的肖像,从而识别犯罪者的脸部。还有我们最常用的车牌识别等。

5语音识别 :智能系统能够与人类对话,通过句子及其含义来听取和理解人的语言。它可以处理不同的重音,俚语,背景噪音,不同人的的声调变化等。

6手写识别 : 手写识别软件通过笔在屏幕上写的文本可以识别字母的形状并将其转换为可编辑的文本。

7智能机器人 : 机器人能够执行人类给出的任务。它们具有传感器,检测到来自现实世界的光,热,温度,运动,声音,碰撞和压力等数据。他拥有高效的处理器,多个传感器和巨大的内存,以展示它的智能,并且能够从错误中吸取教训来适应新的环境。

人工智能在哪些领域可以发挥更大的作用?

人工智能行业主要上市公司:目前国内人工智能行业的上市公司主要有百度百度(BAIDU)、腾讯(TCTZF)、阿里巴巴(BABA)、科大讯飞(002230)等。

本文核心数据:计算机视觉市场占比,计算机视觉核心产品及相关产业规模,机器人视觉获投企业业务赛道情况,中国计算机视觉落地赛道特征,中国计算机视觉核心产品及带动相关产业规模预测

1、 计算机视觉市场占比达到57%

得益于深度学习算法的成熟应用,侧重于感知智能的图像分类技术在工业界逐步实现商用价值,助力金融、安防、互联网交通、医疗、工业、政务等领域智能升级。2020年我国计算机视觉产品的市场规模占整个人工智能行业的57%。

从规模来看,我国计算机视觉在2020年核心产品的市场规模将达到862.1亿元,与此同时,和计算机视觉有关的计算机通信设备销售、医疗器械等专用设备销售、工程建设、传统业务效益转化等带动相关产业规模超过2200亿元。

2、安防、金融、医疗等赛道收到重视

在近年获投的146家计算机视觉创业公司中,热门赛道集中于零售、安防、制造、政务、医疗。零售业是国民经济第三大行业,利用计算机视觉,零售业可基于场景化营销、商品识别分析、消费者识别分析和无人商超等应用,为提升营销转化率、门店运营智能化改革提供途径;安昉是计算机视觉落地最早的场景之一,海量视频的有效利用存在巨大挑战,完全依靠人工费时费力,而安防影像智能分析则可有效缓解这一问题;制造业是国民经济的支柱,对计算机视觉的使用包括智慧现场安监、设备在线监测与运维、智能检测运维、智能辅助运输和工业视觉质检等方向,链条长且场景多样,也孕育了批新兴AI企业。

针对这些行业主要的赛道特征,可以分析出,针对公安、金融、矿山等主管部门释放了非常明确的利好信号或大额持续投资的行业,主要机遇在于将产品打磨到足够精准、鲁棒性足够强,以便进入髙门槛的准入供应池,同时通过解决高难度情形的硬实力卡位;针对医疗、能源和制造等这种极具战略意乂、发展空间极大,但是或陷入长审批周期、或限于审慎性难以快速释放需求的行业,主要机遇在于抢先打通产品进入行业生态圈的渠道和链条,以及谋划过政府、行业生态圈的核心集团企业等途径,积极参与公共服务平台建设,建立从上向下拓展的先发优势,抢先获得大量训练数据与场景理解。

3、未来发展赛道规模将达6千亿

一方面随着计算机视觉的进一步发展,技术的更新将促使产业规模进一步增长,另一方面,计算机视觉和产业融合的加深,也将扩大相关产业规模。预计到2025年我国技术及视觉核心产品及带动的相关产业规模将达到6000亿。其中计算机视觉核心产业复合增长率达到15.9%,计算机视觉带动相关产业的复合增长率达到22.5%。

以上数据参考前瞻产业研究院《中国人工智能行业市场前瞻与投资战略规划分析报告》,

人工智能有什么实际作用?

对人工智能的理解,不同领域的人看法不尽相同,为了博采各家之所长,我和大家交流下现在科技界中不同人士对人工智能的一些看法。

第一种思想。AI就是让人觉得不可思议的计算机程序,人工智能就是机器可以完成人们不认为机器能胜任的事。这个定义虽说很主观,但也非常有趣。这一定义反映了,一个时代里大多数的普通人对人工智能的认知方式:每当一个新的人工智能热点出现时,新闻媒体和大众总是用自己的经验来判定人工智能技术的价值高低,而不管这种技术在本质上究竟有没有“智能”。

第二种思想,AI就是与人类思考方式相似的计算机程序。这是人工智能早期流行的一种定义方式。另一种类似的,同样从思考方式出发的定义是:AI就是能遵照思维里的逻辑规律进行思考的程序。这种思潮最本质的问题是,人类至今对大脑如何实现学习、记忆、归纳、推理等思维过程的机理还缺乏认识,况且,我们并不知道,到底要在哪一个层面(大脑各功能区相互作用的层面?细胞之间交换化学物质和电信号的层面?还是分子和原子运动的层面?)真实模拟人脑的运作,才能制造出可以匹敌人类智慧的智能机器。

第三种思想,AI就是与人类行为相似的计算机程序。与第二种思想,既强调对人脑的研究与模仿不同。第三种思想的支持者认为人工智能的实现不必遵循什么规则或理论框架。无论低级程序,还是高级程序,能够解决问题的的就是程序才是好程序。也就是说,无论计算机以何种方式实现某一功能,只要该功能表现得与人在类似环境下的行为相似,就可以说,这个计算机程序拥有了在该领域内的人工智能。这一定义从近似于人类行为的最终结果出发,忽视达到这一结果的手段。另一种对人工智能的近似定义则更强调人工智能的实用特点:AI就是可以解决问题并获得最大收益的计算机程序。

第四种思想,AI就是会学习的计算机程序。无学习,不AI”,这几乎成了人工智能研究在今天的核心指导思想。许多研究者更愿意将自己称为机器学习专家,而非泛泛的人工智能专家。

第五种思想,AI就是根据对环境的感知,做出合理的行动,并获得最大收益的计算机程序。针对人工智能,不同的定义将人们导向不同的研究或认知方向,不同的理解分别适用于不同的人群和语境。如果非要调和所有看上去合理的定义,我们得到的也许就只是一个全面但过于笼统、模糊的概念。

以上五种思想,就是我在人工智能领域长期学习和探索而得到的收获,在文章的最后,我想引用一句话,这也是我对人工智能长期以来的看法。扬·勒丘恩说,“对人工智能,我最不喜欢的描述是‘它像大脑一样工作’,我不喜欢人们这样说的原因是,虽然深度学习从生命的生物机理中获得灵感,但它与大脑的实际工作原理差别非常非常巨大。将它与大脑进行类比给它赋予了一些神奇的光环,这种描述是危险的。这将导致天花乱坠的宣传,大家在要求一些不切实际的事情。人工智能之前经历了几次寒冬就是因为人们要求了一些人工智能无法给予的东西。”

人工智能作为一种技术也有具有等级之分的。不同等级的人工智能可以进行的操作也不尽相同。

弱人工智能(Weak AI)

也称限制领域人工智能(Narrow AI)或应用型人工智能(Applied AI),指的是专注于且只能解决特定领域问题的人工智能。毫无疑问,今天我们看到的所有人工智能算法和应用都属于弱人工智能的范畴。对于弱人工智能技术,人类现有的科研和工程管理、安全监管方面的经验,大多是适用的。一台可以自动控制汽车行驶的计算机和一台可以将重物吊起的起重机,二者都需要严格的质量控制流程与安全监管策略。自动驾驶程序中的错误可能导致车祸,起重机结构设计上的错误也可能导致起重机的倾覆,二者都会造成人员伤亡。

也就是说,弱人工智能在总体上只是一种技术工具,如果说弱人工智能存在风险,那也和人类已大规模使用的其他技术没有本质的不同。只要严格控制,严密监管,人类完全可以像使用其他工具那样,放心地使用今天的所有AI技术。

强人工智能(Strong AI)

强人工智能又称通用人工智能(Artificial general intelligence)或完全人工智能(Full AI),指的是可以胜任人类所有工作的人工智能。 人可以做什么,强人工智能就可以做什么。这种定义过于宽泛,缺乏一个量化的标准来评估什么样的计算机程序才是强人工智能。为此,不同的研究者提出了许多不同的建议。最为流行、被广为接受的标准是图灵测试。但即便是图灵测试本身,也只是关注于计算机的行为和人类行为之间,从观察者角度而言的不可区分性,并没有提及计算机到底需要具备哪些具体的特质或能力,才能实现这种不可区分性。

一般认为,一个可以称得上强人工智能的程序,大概需要具备以下几方面的能力:

存在不确定因素时进行推理,使用策略,解决问题,制定决策的能 力;

知识表示的能力,包括常识性知识的表示能力;

规划能力;

学习能力;

使用自然语言进行交流沟通的能力;

将上述能力整合起来实现既定目标的能力。

基于上面几种能力的描述,我们大概可以想象,一个具备强人工智能的计算机程序会表现出什么样的行为特征。一旦实现了符合这一描述的强人工智能,那我们几乎可以肯定地说,所有人类工作都可以由人工智能来取代。从乐观主义的角度讲,人类到时就可以坐享其成,让机器人为我们服务,每部机器人也许可以一对一地替换每个人类个体的具体工作,人类则获得完全意义上的自由,只负责享乐,不再需要劳动。

强人工智能的定义里,存在一个关键的争议性问题:强人工智能是否有必要具备人类的“意识”(Consciousness)。有些研究者认为,只有具备人类意识的人工智能才可以叫强人工智能。另一些研究者则说,强人工智能只需要具备胜任人类所有工作的能力就可以了,未必需要人类的意识。 有关意识的争议性话题极其复杂。本质上,这首先会牵扯出“人类的意识到底是什么”这样的难解问题,从而让讨论变得无的放矢。以人类今天对感情、自我认知、记忆、态度等概念的理解,类似的讨论会牵涉哲学、伦理学、人类学、社会学、神经科学、计算机科学等方方面面,短期内还看不出有完美解决这一问题的可能。

也就是说,一旦牵涉“意识”,强人工智能的定义和评估标准就会变得异常复杂。而人们对于强人工智能的担忧也主要来源于此。不难设想,一旦强人工智能程序具备人类的意识,那我们就必然需要像对待一个有健全人格的人那样对待一台机器。那时,人与机器的关系就绝非工具使用者与工具本身这么简单。拥有意识的机器会不会甘愿为人类服务?机器会不会因为某种共同诉求而联合起来站在人类的对立面?一旦拥有意识的强人工智能得以实现,这些问题将直接成为人类面临的现实挑战。

超人工智能(Superintelligence)

假设计算机程序通过不断发展,可以比世界上最聪明、最有天赋的人类还聪明,那么,由此产生的人工智能系统就可以被称为超人工智能。 牛津大学哲学家、未来学家尼克·波斯特洛姆(Nick Bostrom)在他的《超级智能》一书中,将超人工智能定义为“在科学创造力、智慧和社交能力等每一方面都比最强的人类大脑聪明很多的智能”。显然,对今天的人来说,这是一种只存在于科幻电影中的想象场景。

与弱人工智能、强人工智能相比,超人工智能的定义最为模糊,因为没人知道,超越人类最高水平的智慧到底会表现为何种能力。如果说对于强人工智能,我们还存在从技术角度进行探讨的可能性的话,那么,对于超人工智能,今天的人类大多就只能从哲学或科幻的角度加以解析了。

首先,我们不知道强于人类的智慧形式将是怎样的一种存在。现在去谈论超人工智能和人类的关系,不仅仅是为时过早,而是根本不存在可以清晰界定的讨论对象。

其次,我们没有方法,也没有经验去预测超人工智能到底是一种不现实的幻想,还是一种在未来(不管这个未来是一百年还是一千年、一万年)必然会降临的结局。事实上,我们根本无法准确推断,到底计算机程序有没有能力达到这一目标。

显然,如果公众对人工智能会不会挑战人类、威胁人类有担忧的话,那么公众心目中所担心的那个人工智能,基本上属于这里所说的“强人工智能”和“超人工智能”。

人类现在所处的时代是窄领域弱人工智能时代。人工智能的作用范围还是在某一小领域的莫一个范围。值得一提的是现已经有人工智能可以帮助人类写作了。

2011年,一个名叫罗比·艾伦(Robbie Allen)的思科公司工程师将自己创办的一家小公司改名为Automated Insights,这个新名字大有深意——罗比·艾伦立志研发人工智能自动写作程序,而公司新名字的首字母缩写恰好就是人工智能的英文缩写——AI。

借助一套名为“作家”(Wordsmith)的人工智能技术平台,Automated Insights公司首先与美联社等新闻机构合作,用机器自动撰写新闻稿件。2013年,机器自动撰写的新闻稿件数量已达3亿篇,超过了所有主要新闻机构的稿件产出数量;2014年,Automated Insights的人工智能程序已撰写出超过10亿篇的新闻稿。

世界三大通讯社之一的美联社于2014年宣布,将使用Automated Insights公司的技术为所有美国和加拿大上市公司撰写营收业绩报告。目前,每季度美联社使用人工智能程序自动撰写的营收报告数量接近3700篇,这个数量是同时段美联社记者和编辑手工撰写的相关报告数量的12倍。2016年,美联社将自动新闻撰写扩展到体育领域,从美国职业棒球联盟的赛事报道入手,大幅减轻人类记者和编辑的劳动强度。

想看看机器自动撰写的新闻报道是否表达清晰,语句通畅?下面是从美联社职业棒球联盟新闻稿中节选出来的几段:

宾夕法尼亚州立学院(美联社):第十一局,一二三垒有人,一人出局的情况下,迪伦·蒂斯被触身球击中,保送上垒。这是本周三州立学院鹿角队9︰8战胜布鲁克林旋风队的比赛中的一幕。

丹尼·哈茨纳通过牺牲打获得制胜一分。击球后,他成功跑上二垒但在跑向三垒时出局。

基恩·科恩在第一局中打出双杀,使旋风队以1︰0领先。但在第一局的随后时间内,鹿角队连得5分,其中,迪伦·蒂斯的触身球就直接送两人跑回本垒。

自动撰写新闻稿件的好处不言而喻,这不但可以节省记者和编辑的大量劳动,而且可以在应对突发事件时充分体现出计算机的“闪电速度”。

2014年3月17日清晨,仍在梦乡的洛杉矶市居民被轻微的地面晃动惊醒。这是一次震级不大的地震,但因为震源较浅,市民的感受比较明显。地震发生后不到三分钟,《洛杉矶时报》就在网上发布了一则有关这次地震的详细报道,报道不但提及了地震台网观测到的详细数据,还回顾了旧金山区域最近十天的地震观测情况。

人们在新闻报道的网页上看到了《洛杉矶时报》记者的姓名,但该新闻之所以能够在如此快的时间里发出,完全要归功于可以不眠不休工作的人工智能新闻撰写程序。地震发生的瞬间,计算机就从地震台网的数据接口中获得了有关地震的所有数据,然后飞速生成英文报道全文。刚刚从睡梦中惊醒的记者一睁眼就看到了屏幕上的报道文稿,他快速审阅后用鼠标点击了“发布”按钮。一篇自动生成并由人工复核的新闻稿就这样在第一时间快速面世。

现在的科技应用领域处于弱人工智能时代,也就是窄应用人工智能。这种人工智能程序在特定的小领域里已经越来越向着深层发展。

结语:以上就是首席CTO笔记为大家整理的关于人工智能舞姿的作用有哪些的全部内容了,感谢您花时间阅读本站内容,希望对您有所帮助,更多关于人工智能舞姿的作用有哪些的相关内容别忘了在本站进行查找喔。


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如若转载,请注明出处:/AI/17212.html